https://github.com/torvalds/linux
Revision 595d153dd1022392083ac93a1550382cbee127e0 authored by Michael Ellerman on 26 May 2020, 06:18:08 UTC, committed by Michael Ellerman on 26 May 2020, 07:32:37 UTC
Commit 702f09805222 ("powerpc/64s/exception: Remove lite interrupt
return") changed the interrupt return path to not restore non-volatile
registers by default, and explicitly restore them in paths where it is
required.

But it missed that the facility unavailable exception can sometimes
modify user registers, ie. when it does emulation of move from DSCR.

This is seen as a failure of the dscr_sysfs_thread_test:
  test: dscr_sysfs_thread_test
  [cpu 0] User DSCR should be 1 but is 0
  failure: dscr_sysfs_thread_test

So restore non-volatile GPRs after facility unavailable exceptions.

Currently the hypervisor facility unavailable exception is also wired
up to call facility_unavailable_exception().

In practice we should never take a hypervisor facility unavailable
exception for the DSCR. On older bare metal systems we set HFSCR_DSCR
unconditionally in __init_HFSCR, or on newer systems it should be
enabled via the "data-stream-control-register" device tree CPU
feature.

Even if it's not, since commit f3c99f97a3cd ("KVM: PPC: Book3S HV:
Don't access HFSCR, LPIDR or LPCR when running nested"), the KVM code
has unconditionally set HFSCR_DSCR when running guests.

So we should only get a hypervisor facility unavailable for the DSCR
if skiboot has disabled the "data-stream-control-register" feature,
and we are somehow in guest context but not via KVM.

Given all that, it should be unnecessary to add a restore of
non-volatile GPRs after the hypervisor facility exception, because we
never expect to hit that path. But equally we may as well add the
restore, because we never expect to hit that path, and if we ever did,
at least we would correctly restore the registers to their post
emulation state.

In future we can split the non-HV and HV facility unavailable handling
so that there is no emulation in the HV handler, and then remove the
restore for the HV case.

Fixes: 702f09805222 ("powerpc/64s/exception: Remove lite interrupt return")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200526061808.2472279-1-mpe@ellerman.id.au
1 parent 8659a0e
Raw File
Tip revision: 595d153dd1022392083ac93a1550382cbee127e0 authored by Michael Ellerman on 26 May 2020, 06:18:08 UTC
powerpc/64s: Fix restore of NV GPRs after facility unavailable exception
Tip revision: 595d153
rhashtable.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Code partially derived from nft_hash
 * Rewritten with rehash code from br_multicast plus single list
 * pointer as suggested by Josh Triplett
 */

#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/sched.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/rhashtable.h>
#include <linux/err.h>
#include <linux/export.h>

#define HASH_DEFAULT_SIZE	64UL
#define HASH_MIN_SIZE		4U

union nested_table {
	union nested_table __rcu *table;
	struct rhash_lock_head *bucket;
};

static u32 head_hashfn(struct rhashtable *ht,
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
{
	return rht_head_hashfn(ht, tbl, he, ht->p);
}

#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	if (!debug_locks)
		return 1;
	if (unlikely(tbl->nest))
		return 1;
	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif

static void nested_table_free(union nested_table *ntbl, unsigned int size)
{
	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
	const unsigned int len = 1 << shift;
	unsigned int i;

	ntbl = rcu_dereference_raw(ntbl->table);
	if (!ntbl)
		return;

	if (size > len) {
		size >>= shift;
		for (i = 0; i < len; i++)
			nested_table_free(ntbl + i, size);
	}

	kfree(ntbl);
}

static void nested_bucket_table_free(const struct bucket_table *tbl)
{
	unsigned int size = tbl->size >> tbl->nest;
	unsigned int len = 1 << tbl->nest;
	union nested_table *ntbl;
	unsigned int i;

	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);

	for (i = 0; i < len; i++)
		nested_table_free(ntbl + i, size);

	kfree(ntbl);
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl->nest)
		nested_bucket_table_free(tbl);

	kvfree(tbl);
}

static void bucket_table_free_rcu(struct rcu_head *head)
{
	bucket_table_free(container_of(head, struct bucket_table, rcu));
}

static union nested_table *nested_table_alloc(struct rhashtable *ht,
					      union nested_table __rcu **prev,
					      bool leaf)
{
	union nested_table *ntbl;
	int i;

	ntbl = rcu_dereference(*prev);
	if (ntbl)
		return ntbl;

	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);

	if (ntbl && leaf) {
		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
	}

	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
		return ntbl;
	/* Raced with another thread. */
	kfree(ntbl);
	return rcu_dereference(*prev);
}

static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
						      size_t nbuckets,
						      gfp_t gfp)
{
	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
	struct bucket_table *tbl;
	size_t size;

	if (nbuckets < (1 << (shift + 1)))
		return NULL;

	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);

	tbl = kzalloc(size, gfp);
	if (!tbl)
		return NULL;

	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
				false)) {
		kfree(tbl);
		return NULL;
	}

	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;

	return tbl;
}

static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
					       size_t nbuckets,
					       gfp_t gfp)
{
	struct bucket_table *tbl = NULL;
	size_t size;
	int i;
	static struct lock_class_key __key;

	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);

	size = nbuckets;

	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
		nbuckets = 0;
	}

	if (tbl == NULL)
		return NULL;

	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);

	tbl->size = size;

	rcu_head_init(&tbl->rcu);
	INIT_LIST_HEAD(&tbl->walkers);

	tbl->hash_rnd = get_random_u32();

	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);

	return tbl;
}

static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
						  struct bucket_table *tbl)
{
	struct bucket_table *new_tbl;

	do {
		new_tbl = tbl;
		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	} while (tbl);

	return new_tbl;
}

static int rhashtable_rehash_one(struct rhashtable *ht,
				 struct rhash_lock_head **bkt,
				 unsigned int old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
	int err = -EAGAIN;
	struct rhash_head *head, *next, *entry;
	struct rhash_head __rcu **pprev = NULL;
	unsigned int new_hash;

	if (new_tbl->nest)
		goto out;

	err = -ENOENT;

	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
			  old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;

		pprev = &entry->next;
	}

	if (err)
		goto out;

	new_hash = head_hashfn(ht, new_tbl, entry);

	rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);

	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);

	RCU_INIT_POINTER(entry->next, head);

	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);

	if (pprev)
		rcu_assign_pointer(*pprev, next);
	else
		/* Need to preserved the bit lock. */
		rht_assign_locked(bkt, next);

out:
	return err;
}

static int rhashtable_rehash_chain(struct rhashtable *ht,
				    unsigned int old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct rhash_lock_head **bkt = rht_bucket_var(old_tbl, old_hash);
	int err;

	if (!bkt)
		return 0;
	rht_lock(old_tbl, bkt);

	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
		;

	if (err == -ENOENT)
		err = 0;
	rht_unlock(old_tbl, bkt);

	return err;
}

static int rhashtable_rehash_attach(struct rhashtable *ht,
				    struct bucket_table *old_tbl,
				    struct bucket_table *new_tbl)
{
	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 * As cmpxchg() provides strong barriers, we do not need
	 * rcu_assign_pointer().
	 */

	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
		    new_tbl) != NULL)
		return -EEXIST;

	return 0;
}

static int rhashtable_rehash_table(struct rhashtable *ht)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct bucket_table *new_tbl;
	struct rhashtable_walker *walker;
	unsigned int old_hash;
	int err;

	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
	if (!new_tbl)
		return 0;

	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
		err = rhashtable_rehash_chain(ht, old_hash);
		if (err)
			return err;
		cond_resched();
	}

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

	spin_lock(&ht->lock);
	list_for_each_entry(walker, &old_tbl->walkers, list)
		walker->tbl = NULL;

	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 * We do this inside the locked region so that
	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
	 * to check if it should not re-link the table.
	 */
	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
	spin_unlock(&ht->lock);

	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
}

static int rhashtable_rehash_alloc(struct rhashtable *ht,
				   struct bucket_table *old_tbl,
				   unsigned int size)
{
	struct bucket_table *new_tbl;
	int err;

	ASSERT_RHT_MUTEX(ht);

	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
	if (new_tbl == NULL)
		return -ENOMEM;

	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
	if (err)
		bucket_table_free(new_tbl);

	return err;
}

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function shrinks the hash table to fit, i.e., the smallest
 * size would not cause it to expand right away automatically.
 *
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
 */
static int rhashtable_shrink(struct rhashtable *ht)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	unsigned int nelems = atomic_read(&ht->nelems);
	unsigned int size = 0;

	if (nelems)
		size = roundup_pow_of_two(nelems * 3 / 2);
	if (size < ht->p.min_size)
		size = ht->p.min_size;

	if (old_tbl->size <= size)
		return 0;

	if (rht_dereference(old_tbl->future_tbl, ht))
		return -EEXIST;

	return rhashtable_rehash_alloc(ht, old_tbl, size);
}

static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
	int err = 0;

	ht = container_of(work, struct rhashtable, run_work);
	mutex_lock(&ht->mutex);

	tbl = rht_dereference(ht->tbl, ht);
	tbl = rhashtable_last_table(ht, tbl);

	if (rht_grow_above_75(ht, tbl))
		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
		err = rhashtable_shrink(ht);
	else if (tbl->nest)
		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);

	if (!err || err == -EEXIST) {
		int nerr;

		nerr = rhashtable_rehash_table(ht);
		err = err ?: nerr;
	}

	mutex_unlock(&ht->mutex);

	if (err)
		schedule_work(&ht->run_work);
}

static int rhashtable_insert_rehash(struct rhashtable *ht,
				    struct bucket_table *tbl)
{
	struct bucket_table *old_tbl;
	struct bucket_table *new_tbl;
	unsigned int size;
	int err;

	old_tbl = rht_dereference_rcu(ht->tbl, ht);

	size = tbl->size;

	err = -EBUSY;

	if (rht_grow_above_75(ht, tbl))
		size *= 2;
	/* Do not schedule more than one rehash */
	else if (old_tbl != tbl)
		goto fail;

	err = -ENOMEM;

	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
	if (new_tbl == NULL)
		goto fail;

	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
	if (err) {
		bucket_table_free(new_tbl);
		if (err == -EEXIST)
			err = 0;
	} else
		schedule_work(&ht->run_work);

	return err;

fail:
	/* Do not fail the insert if someone else did a rehash. */
	if (likely(rcu_access_pointer(tbl->future_tbl)))
		return 0;

	/* Schedule async rehash to retry allocation in process context. */
	if (err == -ENOMEM)
		schedule_work(&ht->run_work);

	return err;
}

static void *rhashtable_lookup_one(struct rhashtable *ht,
				   struct rhash_lock_head **bkt,
				   struct bucket_table *tbl, unsigned int hash,
				   const void *key, struct rhash_head *obj)
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
	struct rhash_head __rcu **pprev = NULL;
	struct rhash_head *head;
	int elasticity;

	elasticity = RHT_ELASTICITY;
	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
		struct rhlist_head *list;
		struct rhlist_head *plist;

		elasticity--;
		if (!key ||
		    (ht->p.obj_cmpfn ?
		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
			pprev = &head->next;
			continue;
		}

		if (!ht->rhlist)
			return rht_obj(ht, head);

		list = container_of(obj, struct rhlist_head, rhead);
		plist = container_of(head, struct rhlist_head, rhead);

		RCU_INIT_POINTER(list->next, plist);
		head = rht_dereference_bucket(head->next, tbl, hash);
		RCU_INIT_POINTER(list->rhead.next, head);
		if (pprev)
			rcu_assign_pointer(*pprev, obj);
		else
			/* Need to preserve the bit lock */
			rht_assign_locked(bkt, obj);

		return NULL;
	}

	if (elasticity <= 0)
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-ENOENT);
}

static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
						  struct rhash_lock_head **bkt,
						  struct bucket_table *tbl,
						  unsigned int hash,
						  struct rhash_head *obj,
						  void *data)
{
	struct bucket_table *new_tbl;
	struct rhash_head *head;

	if (!IS_ERR_OR_NULL(data))
		return ERR_PTR(-EEXIST);

	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
		return ERR_CAST(data);

	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (new_tbl)
		return new_tbl;

	if (PTR_ERR(data) != -ENOENT)
		return ERR_CAST(data);

	if (unlikely(rht_grow_above_max(ht, tbl)))
		return ERR_PTR(-E2BIG);

	if (unlikely(rht_grow_above_100(ht, tbl)))
		return ERR_PTR(-EAGAIN);

	head = rht_ptr(bkt, tbl, hash);

	RCU_INIT_POINTER(obj->next, head);
	if (ht->rhlist) {
		struct rhlist_head *list;

		list = container_of(obj, struct rhlist_head, rhead);
		RCU_INIT_POINTER(list->next, NULL);
	}

	/* bkt is always the head of the list, so it holds
	 * the lock, which we need to preserve
	 */
	rht_assign_locked(bkt, obj);

	atomic_inc(&ht->nelems);
	if (rht_grow_above_75(ht, tbl))
		schedule_work(&ht->run_work);

	return NULL;
}

static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
				   struct rhash_head *obj)
{
	struct bucket_table *new_tbl;
	struct bucket_table *tbl;
	struct rhash_lock_head **bkt;
	unsigned int hash;
	void *data;

	new_tbl = rcu_dereference(ht->tbl);

	do {
		tbl = new_tbl;
		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
		if (rcu_access_pointer(tbl->future_tbl))
			/* Failure is OK */
			bkt = rht_bucket_var(tbl, hash);
		else
			bkt = rht_bucket_insert(ht, tbl, hash);
		if (bkt == NULL) {
			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
			data = ERR_PTR(-EAGAIN);
		} else {
			rht_lock(tbl, bkt);
			data = rhashtable_lookup_one(ht, bkt, tbl,
						     hash, key, obj);
			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
							hash, obj, data);
			if (PTR_ERR(new_tbl) != -EEXIST)
				data = ERR_CAST(new_tbl);

			rht_unlock(tbl, bkt);
		}
	} while (!IS_ERR_OR_NULL(new_tbl));

	if (PTR_ERR(data) == -EAGAIN)
		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
			       -EAGAIN);

	return data;
}

void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
			     struct rhash_head *obj)
{
	void *data;

	do {
		rcu_read_lock();
		data = rhashtable_try_insert(ht, key, obj);
		rcu_read_unlock();
	} while (PTR_ERR(data) == -EAGAIN);

	return data;
}
EXPORT_SYMBOL_GPL(rhashtable_insert_slow);

/**
 * rhashtable_walk_enter - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may be called from any process context, including
 * non-preemptable context, but cannot be called from softirq or
 * hardirq context.
 *
 * You must call rhashtable_walk_exit after this function returns.
 */
void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;
	iter->end_of_table = 0;

	spin_lock(&ht->lock);
	iter->walker.tbl =
		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
	spin_unlock(&ht->lock);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_enter);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_enter.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	spin_lock(&iter->ht->lock);
	if (iter->walker.tbl)
		list_del(&iter->walker.list);
	spin_unlock(&iter->ht->lock);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start_check - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk at the current iterator position.  Note that we take
 * the RCU lock in all cases including when we return an error.  So you must
 * always call rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 *
 * rhashtable_walk_start is defined as an inline variant that returns
 * void. This is preferred in cases where the caller would ignore
 * resize events and always continue.
 */
int rhashtable_walk_start_check(struct rhashtable_iter *iter)
	__acquires(RCU)
{
	struct rhashtable *ht = iter->ht;
	bool rhlist = ht->rhlist;

	rcu_read_lock();

	spin_lock(&ht->lock);
	if (iter->walker.tbl)
		list_del(&iter->walker.list);
	spin_unlock(&ht->lock);

	if (iter->end_of_table)
		return 0;
	if (!iter->walker.tbl) {
		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
		iter->slot = 0;
		iter->skip = 0;
		return -EAGAIN;
	}

	if (iter->p && !rhlist) {
		/*
		 * We need to validate that 'p' is still in the table, and
		 * if so, update 'skip'
		 */
		struct rhash_head *p;
		int skip = 0;
		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
			skip++;
			if (p == iter->p) {
				iter->skip = skip;
				goto found;
			}
		}
		iter->p = NULL;
	} else if (iter->p && rhlist) {
		/* Need to validate that 'list' is still in the table, and
		 * if so, update 'skip' and 'p'.
		 */
		struct rhash_head *p;
		struct rhlist_head *list;
		int skip = 0;
		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
			for (list = container_of(p, struct rhlist_head, rhead);
			     list;
			     list = rcu_dereference(list->next)) {
				skip++;
				if (list == iter->list) {
					iter->p = p;
					iter->skip = skip;
					goto found;
				}
			}
		}
		iter->p = NULL;
	}
found:
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);

/**
 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 * one in case of a new walk).
 *
 * @iter:	Hash table iterator
 *
 * Returns the found object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occurred.
 */
static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
{
	struct bucket_table *tbl = iter->walker.tbl;
	struct rhlist_head *list = iter->list;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	bool rhlist = ht->rhlist;

	if (!tbl)
		return NULL;

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (rhlist) {
				list = container_of(p, struct rhlist_head,
						    rhead);
				do {
					if (!skip)
						goto next;
					skip--;
					list = rcu_dereference(list->next);
				} while (list);

				continue;
			}
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			iter->list = list;
			return rht_obj(ht, rhlist ? &list->rhead : p);
		}

		iter->skip = 0;
	}

	iter->p = NULL;

	/* Ensure we see any new tables. */
	smp_rmb();

	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (iter->walker.tbl) {
		iter->slot = 0;
		iter->skip = 0;
		return ERR_PTR(-EAGAIN);
	} else {
		iter->end_of_table = true;
	}

	return NULL;
}

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
	struct rhlist_head *list = iter->list;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	bool rhlist = ht->rhlist;

	if (p) {
		if (!rhlist || !(list = rcu_dereference(list->next))) {
			p = rcu_dereference(p->next);
			list = container_of(p, struct rhlist_head, rhead);
		}
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			iter->list = list;
			return rht_obj(ht, rhlist ? &list->rhead : p);
		}

		/* At the end of this slot, switch to next one and then find
		 * next entry from that point.
		 */
		iter->skip = 0;
		iter->slot++;
	}

	return __rhashtable_walk_find_next(iter);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 * @iter:	Hash table iterator
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_peek(struct rhashtable_iter *iter)
{
	struct rhlist_head *list = iter->list;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;

	if (p)
		return rht_obj(ht, ht->rhlist ? &list->rhead : p);

	/* No object found in current iter, find next one in the table. */

	if (iter->skip) {
		/* A nonzero skip value points to the next entry in the table
		 * beyond that last one that was found. Decrement skip so
		 * we find the current value. __rhashtable_walk_find_next
		 * will restore the original value of skip assuming that
		 * the table hasn't changed.
		 */
		iter->skip--;
	}

	return __rhashtable_walk_find_next(iter);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_peek);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.  Does not reset the iterator to the start of the
 * hash table.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
	__releases(RCU)
{
	struct rhashtable *ht;
	struct bucket_table *tbl = iter->walker.tbl;

	if (!tbl)
		goto out;

	ht = iter->ht;

	spin_lock(&ht->lock);
	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
		/* This bucket table is being freed, don't re-link it. */
		iter->walker.tbl = NULL;
	else
		list_add(&iter->walker.list, &tbl->walkers);
	spin_unlock(&ht->lock);

out:
	rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

static size_t rounded_hashtable_size(const struct rhashtable_params *params)
{
	size_t retsize;

	if (params->nelem_hint)
		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
			      (unsigned long)params->min_size);
	else
		retsize = max(HASH_DEFAULT_SIZE,
			      (unsigned long)params->min_size);

	return retsize;
}

static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
{
	return jhash2(key, length, seed);
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
 *	.hashfn = jhash,
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.hashfn = jhash,
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht,
		    const struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;

	if ((!params->key_len && !params->obj_hashfn) ||
	    (params->obj_hashfn && !params->obj_cmpfn))
		return -EINVAL;

	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	spin_lock_init(&ht->lock);
	memcpy(&ht->p, params, sizeof(*params));

	if (params->min_size)
		ht->p.min_size = roundup_pow_of_two(params->min_size);

	/* Cap total entries at 2^31 to avoid nelems overflow. */
	ht->max_elems = 1u << 31;

	if (params->max_size) {
		ht->p.max_size = rounddown_pow_of_two(params->max_size);
		if (ht->p.max_size < ht->max_elems / 2)
			ht->max_elems = ht->p.max_size * 2;
	}

	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);

	size = rounded_hashtable_size(&ht->p);

	ht->key_len = ht->p.key_len;
	if (!params->hashfn) {
		ht->p.hashfn = jhash;

		if (!(ht->key_len & (sizeof(u32) - 1))) {
			ht->key_len /= sizeof(u32);
			ht->p.hashfn = rhashtable_jhash2;
		}
	}

	/*
	 * This is api initialization and thus we need to guarantee the
	 * initial rhashtable allocation. Upon failure, retry with the
	 * smallest possible size with __GFP_NOFAIL semantics.
	 */
	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
	if (unlikely(tbl == NULL)) {
		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
	}

	atomic_set(&ht->nelems, 0);

	RCU_INIT_POINTER(ht->tbl, tbl);

	INIT_WORK(&ht->run_work, rht_deferred_worker);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhltable_init - initialize a new hash list table
 * @hlt:	hash list table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash list table.
 *
 * See documentation for rhashtable_init.
 */
int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
{
	int err;

	err = rhashtable_init(&hlt->ht, params);
	hlt->ht.rhlist = true;
	return err;
}
EXPORT_SYMBOL_GPL(rhltable_init);

static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
				void (*free_fn)(void *ptr, void *arg),
				void *arg)
{
	struct rhlist_head *list;

	if (!ht->rhlist) {
		free_fn(rht_obj(ht, obj), arg);
		return;
	}

	list = container_of(obj, struct rhlist_head, rhead);
	do {
		obj = &list->rhead;
		list = rht_dereference(list->next, ht);
		free_fn(rht_obj(ht, obj), arg);
	} while (list);
}

/**
 * rhashtable_free_and_destroy - free elements and destroy hash table
 * @ht:		the hash table to destroy
 * @free_fn:	callback to release resources of element
 * @arg:	pointer passed to free_fn
 *
 * Stops an eventual async resize. If defined, invokes free_fn for each
 * element to releasal resources. Please note that RCU protected
 * readers may still be accessing the elements. Releasing of resources
 * must occur in a compatible manner. Then frees the bucket array.
 *
 * This function will eventually sleep to wait for an async resize
 * to complete. The caller is responsible that no further write operations
 * occurs in parallel.
 */
void rhashtable_free_and_destroy(struct rhashtable *ht,
				 void (*free_fn)(void *ptr, void *arg),
				 void *arg)
{
	struct bucket_table *tbl, *next_tbl;
	unsigned int i;

	cancel_work_sync(&ht->run_work);

	mutex_lock(&ht->mutex);
	tbl = rht_dereference(ht->tbl, ht);
restart:
	if (free_fn) {
		for (i = 0; i < tbl->size; i++) {
			struct rhash_head *pos, *next;

			cond_resched();
			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL;
			     !rht_is_a_nulls(pos);
			     pos = next,
			     next = !rht_is_a_nulls(pos) ?
					rht_dereference(pos->next, ht) : NULL)
				rhashtable_free_one(ht, pos, free_fn, arg);
		}
	}

	next_tbl = rht_dereference(tbl->future_tbl, ht);
	bucket_table_free(tbl);
	if (next_tbl) {
		tbl = next_tbl;
		goto restart;
	}
	mutex_unlock(&ht->mutex);
}
EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);

void rhashtable_destroy(struct rhashtable *ht)
{
	return rhashtable_free_and_destroy(ht, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);

struct rhash_lock_head **__rht_bucket_nested(const struct bucket_table *tbl,
					     unsigned int hash)
{
	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
	unsigned int index = hash & ((1 << tbl->nest) - 1);
	unsigned int size = tbl->size >> tbl->nest;
	unsigned int subhash = hash;
	union nested_table *ntbl;

	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
	subhash >>= tbl->nest;

	while (ntbl && size > (1 << shift)) {
		index = subhash & ((1 << shift) - 1);
		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
						  tbl, hash);
		size >>= shift;
		subhash >>= shift;
	}

	if (!ntbl)
		return NULL;

	return &ntbl[subhash].bucket;

}
EXPORT_SYMBOL_GPL(__rht_bucket_nested);

struct rhash_lock_head **rht_bucket_nested(const struct bucket_table *tbl,
					   unsigned int hash)
{
	static struct rhash_lock_head *rhnull;

	if (!rhnull)
		INIT_RHT_NULLS_HEAD(rhnull);
	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
}
EXPORT_SYMBOL_GPL(rht_bucket_nested);

struct rhash_lock_head **rht_bucket_nested_insert(struct rhashtable *ht,
						  struct bucket_table *tbl,
						  unsigned int hash)
{
	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
	unsigned int index = hash & ((1 << tbl->nest) - 1);
	unsigned int size = tbl->size >> tbl->nest;
	union nested_table *ntbl;

	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
	hash >>= tbl->nest;
	ntbl = nested_table_alloc(ht, &ntbl[index].table,
				  size <= (1 << shift));

	while (ntbl && size > (1 << shift)) {
		index = hash & ((1 << shift) - 1);
		size >>= shift;
		hash >>= shift;
		ntbl = nested_table_alloc(ht, &ntbl[index].table,
					  size <= (1 << shift));
	}

	if (!ntbl)
		return NULL;

	return &ntbl[hash].bucket;

}
EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
back to top