Revision 595d153dd1022392083ac93a1550382cbee127e0 authored by Michael Ellerman on 26 May 2020, 06:18:08 UTC, committed by Michael Ellerman on 26 May 2020, 07:32:37 UTC
Commit 702f09805222 ("powerpc/64s/exception: Remove lite interrupt
return") changed the interrupt return path to not restore non-volatile
registers by default, and explicitly restore them in paths where it is
required.

But it missed that the facility unavailable exception can sometimes
modify user registers, ie. when it does emulation of move from DSCR.

This is seen as a failure of the dscr_sysfs_thread_test:
  test: dscr_sysfs_thread_test
  [cpu 0] User DSCR should be 1 but is 0
  failure: dscr_sysfs_thread_test

So restore non-volatile GPRs after facility unavailable exceptions.

Currently the hypervisor facility unavailable exception is also wired
up to call facility_unavailable_exception().

In practice we should never take a hypervisor facility unavailable
exception for the DSCR. On older bare metal systems we set HFSCR_DSCR
unconditionally in __init_HFSCR, or on newer systems it should be
enabled via the "data-stream-control-register" device tree CPU
feature.

Even if it's not, since commit f3c99f97a3cd ("KVM: PPC: Book3S HV:
Don't access HFSCR, LPIDR or LPCR when running nested"), the KVM code
has unconditionally set HFSCR_DSCR when running guests.

So we should only get a hypervisor facility unavailable for the DSCR
if skiboot has disabled the "data-stream-control-register" feature,
and we are somehow in guest context but not via KVM.

Given all that, it should be unnecessary to add a restore of
non-volatile GPRs after the hypervisor facility exception, because we
never expect to hit that path. But equally we may as well add the
restore, because we never expect to hit that path, and if we ever did,
at least we would correctly restore the registers to their post
emulation state.

In future we can split the non-HV and HV facility unavailable handling
so that there is no emulation in the HV handler, and then remove the
restore for the HV case.

Fixes: 702f09805222 ("powerpc/64s/exception: Remove lite interrupt return")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200526061808.2472279-1-mpe@ellerman.id.au
1 parent 8659a0e
Raw File
freezer.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * kernel/freezer.c - Function to freeze a process
 *
 * Originally from kernel/power/process.c
 */

#include <linux/interrupt.h>
#include <linux/suspend.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/freezer.h>
#include <linux/kthread.h>

/* total number of freezing conditions in effect */
atomic_t system_freezing_cnt = ATOMIC_INIT(0);
EXPORT_SYMBOL(system_freezing_cnt);

/* indicate whether PM freezing is in effect, protected by
 * system_transition_mutex
 */
bool pm_freezing;
bool pm_nosig_freezing;

/* protects freezing and frozen transitions */
static DEFINE_SPINLOCK(freezer_lock);

/**
 * freezing_slow_path - slow path for testing whether a task needs to be frozen
 * @p: task to be tested
 *
 * This function is called by freezing() if system_freezing_cnt isn't zero
 * and tests whether @p needs to enter and stay in frozen state.  Can be
 * called under any context.  The freezers are responsible for ensuring the
 * target tasks see the updated state.
 */
bool freezing_slow_path(struct task_struct *p)
{
	if (p->flags & (PF_NOFREEZE | PF_SUSPEND_TASK))
		return false;

	if (test_tsk_thread_flag(p, TIF_MEMDIE))
		return false;

	if (pm_nosig_freezing || cgroup_freezing(p))
		return true;

	if (pm_freezing && !(p->flags & PF_KTHREAD))
		return true;

	return false;
}
EXPORT_SYMBOL(freezing_slow_path);

/* Refrigerator is place where frozen processes are stored :-). */
bool __refrigerator(bool check_kthr_stop)
{
	/* Hmm, should we be allowed to suspend when there are realtime
	   processes around? */
	bool was_frozen = false;
	long save = current->state;

	pr_debug("%s entered refrigerator\n", current->comm);

	for (;;) {
		set_current_state(TASK_UNINTERRUPTIBLE);

		spin_lock_irq(&freezer_lock);
		current->flags |= PF_FROZEN;
		if (!freezing(current) ||
		    (check_kthr_stop && kthread_should_stop()))
			current->flags &= ~PF_FROZEN;
		spin_unlock_irq(&freezer_lock);

		if (!(current->flags & PF_FROZEN))
			break;
		was_frozen = true;
		schedule();
	}

	pr_debug("%s left refrigerator\n", current->comm);

	/*
	 * Restore saved task state before returning.  The mb'd version
	 * needs to be used; otherwise, it might silently break
	 * synchronization which depends on ordered task state change.
	 */
	set_current_state(save);

	return was_frozen;
}
EXPORT_SYMBOL(__refrigerator);

static void fake_signal_wake_up(struct task_struct *p)
{
	unsigned long flags;

	if (lock_task_sighand(p, &flags)) {
		signal_wake_up(p, 0);
		unlock_task_sighand(p, &flags);
	}
}

/**
 * freeze_task - send a freeze request to given task
 * @p: task to send the request to
 *
 * If @p is freezing, the freeze request is sent either by sending a fake
 * signal (if it's not a kernel thread) or waking it up (if it's a kernel
 * thread).
 *
 * RETURNS:
 * %false, if @p is not freezing or already frozen; %true, otherwise
 */
bool freeze_task(struct task_struct *p)
{
	unsigned long flags;

	/*
	 * This check can race with freezer_do_not_count, but worst case that
	 * will result in an extra wakeup being sent to the task.  It does not
	 * race with freezer_count(), the barriers in freezer_count() and
	 * freezer_should_skip() ensure that either freezer_count() sees
	 * freezing == true in try_to_freeze() and freezes, or
	 * freezer_should_skip() sees !PF_FREEZE_SKIP and freezes the task
	 * normally.
	 */
	if (freezer_should_skip(p))
		return false;

	spin_lock_irqsave(&freezer_lock, flags);
	if (!freezing(p) || frozen(p)) {
		spin_unlock_irqrestore(&freezer_lock, flags);
		return false;
	}

	if (!(p->flags & PF_KTHREAD))
		fake_signal_wake_up(p);
	else
		wake_up_state(p, TASK_INTERRUPTIBLE);

	spin_unlock_irqrestore(&freezer_lock, flags);
	return true;
}

void __thaw_task(struct task_struct *p)
{
	unsigned long flags;

	spin_lock_irqsave(&freezer_lock, flags);
	if (frozen(p))
		wake_up_process(p);
	spin_unlock_irqrestore(&freezer_lock, flags);
}

/**
 * set_freezable - make %current freezable
 *
 * Mark %current freezable and enter refrigerator if necessary.
 */
bool set_freezable(void)
{
	might_sleep();

	/*
	 * Modify flags while holding freezer_lock.  This ensures the
	 * freezer notices that we aren't frozen yet or the freezing
	 * condition is visible to try_to_freeze() below.
	 */
	spin_lock_irq(&freezer_lock);
	current->flags &= ~PF_NOFREEZE;
	spin_unlock_irq(&freezer_lock);

	return try_to_freeze();
}
EXPORT_SYMBOL(set_freezable);
back to top