Revision 595d153dd1022392083ac93a1550382cbee127e0 authored by Michael Ellerman on 26 May 2020, 06:18:08 UTC, committed by Michael Ellerman on 26 May 2020, 07:32:37 UTC
Commit 702f09805222 ("powerpc/64s/exception: Remove lite interrupt
return") changed the interrupt return path to not restore non-volatile
registers by default, and explicitly restore them in paths where it is
required.

But it missed that the facility unavailable exception can sometimes
modify user registers, ie. when it does emulation of move from DSCR.

This is seen as a failure of the dscr_sysfs_thread_test:
  test: dscr_sysfs_thread_test
  [cpu 0] User DSCR should be 1 but is 0
  failure: dscr_sysfs_thread_test

So restore non-volatile GPRs after facility unavailable exceptions.

Currently the hypervisor facility unavailable exception is also wired
up to call facility_unavailable_exception().

In practice we should never take a hypervisor facility unavailable
exception for the DSCR. On older bare metal systems we set HFSCR_DSCR
unconditionally in __init_HFSCR, or on newer systems it should be
enabled via the "data-stream-control-register" device tree CPU
feature.

Even if it's not, since commit f3c99f97a3cd ("KVM: PPC: Book3S HV:
Don't access HFSCR, LPIDR or LPCR when running nested"), the KVM code
has unconditionally set HFSCR_DSCR when running guests.

So we should only get a hypervisor facility unavailable for the DSCR
if skiboot has disabled the "data-stream-control-register" feature,
and we are somehow in guest context but not via KVM.

Given all that, it should be unnecessary to add a restore of
non-volatile GPRs after the hypervisor facility exception, because we
never expect to hit that path. But equally we may as well add the
restore, because we never expect to hit that path, and if we ever did,
at least we would correctly restore the registers to their post
emulation state.

In future we can split the non-HV and HV facility unavailable handling
so that there is no emulation in the HV handler, and then remove the
restore for the HV case.

Fixes: 702f09805222 ("powerpc/64s/exception: Remove lite interrupt return")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200526061808.2472279-1-mpe@ellerman.id.au
1 parent 8659a0e
Raw File
tracepoint.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2008-2014 Mathieu Desnoyers
 */
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/jhash.h>
#include <linux/list.h>
#include <linux/rcupdate.h>
#include <linux/tracepoint.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/static_key.h>

extern tracepoint_ptr_t __start___tracepoints_ptrs[];
extern tracepoint_ptr_t __stop___tracepoints_ptrs[];

DEFINE_SRCU(tracepoint_srcu);
EXPORT_SYMBOL_GPL(tracepoint_srcu);

/* Set to 1 to enable tracepoint debug output */
static const int tracepoint_debug;

#ifdef CONFIG_MODULES
/*
 * Tracepoint module list mutex protects the local module list.
 */
static DEFINE_MUTEX(tracepoint_module_list_mutex);

/* Local list of struct tp_module */
static LIST_HEAD(tracepoint_module_list);
#endif /* CONFIG_MODULES */

/*
 * tracepoints_mutex protects the builtin and module tracepoints.
 * tracepoints_mutex nests inside tracepoint_module_list_mutex.
 */
static DEFINE_MUTEX(tracepoints_mutex);

static struct rcu_head *early_probes;
static bool ok_to_free_tracepoints;

/*
 * Note about RCU :
 * It is used to delay the free of multiple probes array until a quiescent
 * state is reached.
 */
struct tp_probes {
	struct rcu_head rcu;
	struct tracepoint_func probes[0];
};

static inline void *allocate_probes(int count)
{
	struct tp_probes *p  = kmalloc(struct_size(p, probes, count),
				       GFP_KERNEL);
	return p == NULL ? NULL : p->probes;
}

static void srcu_free_old_probes(struct rcu_head *head)
{
	kfree(container_of(head, struct tp_probes, rcu));
}

static void rcu_free_old_probes(struct rcu_head *head)
{
	call_srcu(&tracepoint_srcu, head, srcu_free_old_probes);
}

static __init int release_early_probes(void)
{
	struct rcu_head *tmp;

	ok_to_free_tracepoints = true;

	while (early_probes) {
		tmp = early_probes;
		early_probes = tmp->next;
		call_rcu(tmp, rcu_free_old_probes);
	}

	return 0;
}

/* SRCU is initialized at core_initcall */
postcore_initcall(release_early_probes);

static inline void release_probes(struct tracepoint_func *old)
{
	if (old) {
		struct tp_probes *tp_probes = container_of(old,
			struct tp_probes, probes[0]);

		/*
		 * We can't free probes if SRCU is not initialized yet.
		 * Postpone the freeing till after SRCU is initialized.
		 */
		if (unlikely(!ok_to_free_tracepoints)) {
			tp_probes->rcu.next = early_probes;
			early_probes = &tp_probes->rcu;
			return;
		}

		/*
		 * Tracepoint probes are protected by both sched RCU and SRCU,
		 * by calling the SRCU callback in the sched RCU callback we
		 * cover both cases. So let us chain the SRCU and sched RCU
		 * callbacks to wait for both grace periods.
		 */
		call_rcu(&tp_probes->rcu, rcu_free_old_probes);
	}
}

static void debug_print_probes(struct tracepoint_func *funcs)
{
	int i;

	if (!tracepoint_debug || !funcs)
		return;

	for (i = 0; funcs[i].func; i++)
		printk(KERN_DEBUG "Probe %d : %p\n", i, funcs[i].func);
}

static struct tracepoint_func *
func_add(struct tracepoint_func **funcs, struct tracepoint_func *tp_func,
	 int prio)
{
	struct tracepoint_func *old, *new;
	int nr_probes = 0;
	int pos = -1;

	if (WARN_ON(!tp_func->func))
		return ERR_PTR(-EINVAL);

	debug_print_probes(*funcs);
	old = *funcs;
	if (old) {
		/* (N -> N+1), (N != 0, 1) probes */
		for (nr_probes = 0; old[nr_probes].func; nr_probes++) {
			/* Insert before probes of lower priority */
			if (pos < 0 && old[nr_probes].prio < prio)
				pos = nr_probes;
			if (old[nr_probes].func == tp_func->func &&
			    old[nr_probes].data == tp_func->data)
				return ERR_PTR(-EEXIST);
		}
	}
	/* + 2 : one for new probe, one for NULL func */
	new = allocate_probes(nr_probes + 2);
	if (new == NULL)
		return ERR_PTR(-ENOMEM);
	if (old) {
		if (pos < 0) {
			pos = nr_probes;
			memcpy(new, old, nr_probes * sizeof(struct tracepoint_func));
		} else {
			/* Copy higher priority probes ahead of the new probe */
			memcpy(new, old, pos * sizeof(struct tracepoint_func));
			/* Copy the rest after it. */
			memcpy(new + pos + 1, old + pos,
			       (nr_probes - pos) * sizeof(struct tracepoint_func));
		}
	} else
		pos = 0;
	new[pos] = *tp_func;
	new[nr_probes + 1].func = NULL;
	*funcs = new;
	debug_print_probes(*funcs);
	return old;
}

static void *func_remove(struct tracepoint_func **funcs,
		struct tracepoint_func *tp_func)
{
	int nr_probes = 0, nr_del = 0, i;
	struct tracepoint_func *old, *new;

	old = *funcs;

	if (!old)
		return ERR_PTR(-ENOENT);

	debug_print_probes(*funcs);
	/* (N -> M), (N > 1, M >= 0) probes */
	if (tp_func->func) {
		for (nr_probes = 0; old[nr_probes].func; nr_probes++) {
			if (old[nr_probes].func == tp_func->func &&
			     old[nr_probes].data == tp_func->data)
				nr_del++;
		}
	}

	/*
	 * If probe is NULL, then nr_probes = nr_del = 0, and then the
	 * entire entry will be removed.
	 */
	if (nr_probes - nr_del == 0) {
		/* N -> 0, (N > 1) */
		*funcs = NULL;
		debug_print_probes(*funcs);
		return old;
	} else {
		int j = 0;
		/* N -> M, (N > 1, M > 0) */
		/* + 1 for NULL */
		new = allocate_probes(nr_probes - nr_del + 1);
		if (new == NULL)
			return ERR_PTR(-ENOMEM);
		for (i = 0; old[i].func; i++)
			if (old[i].func != tp_func->func
					|| old[i].data != tp_func->data)
				new[j++] = old[i];
		new[nr_probes - nr_del].func = NULL;
		*funcs = new;
	}
	debug_print_probes(*funcs);
	return old;
}

/*
 * Add the probe function to a tracepoint.
 */
static int tracepoint_add_func(struct tracepoint *tp,
			       struct tracepoint_func *func, int prio)
{
	struct tracepoint_func *old, *tp_funcs;
	int ret;

	if (tp->regfunc && !static_key_enabled(&tp->key)) {
		ret = tp->regfunc();
		if (ret < 0)
			return ret;
	}

	tp_funcs = rcu_dereference_protected(tp->funcs,
			lockdep_is_held(&tracepoints_mutex));
	old = func_add(&tp_funcs, func, prio);
	if (IS_ERR(old)) {
		WARN_ON_ONCE(PTR_ERR(old) != -ENOMEM);
		return PTR_ERR(old);
	}

	/*
	 * rcu_assign_pointer has as smp_store_release() which makes sure
	 * that the new probe callbacks array is consistent before setting
	 * a pointer to it.  This array is referenced by __DO_TRACE from
	 * include/linux/tracepoint.h using rcu_dereference_sched().
	 */
	rcu_assign_pointer(tp->funcs, tp_funcs);
	if (!static_key_enabled(&tp->key))
		static_key_slow_inc(&tp->key);
	release_probes(old);
	return 0;
}

/*
 * Remove a probe function from a tracepoint.
 * Note: only waiting an RCU period after setting elem->call to the empty
 * function insures that the original callback is not used anymore. This insured
 * by preempt_disable around the call site.
 */
static int tracepoint_remove_func(struct tracepoint *tp,
		struct tracepoint_func *func)
{
	struct tracepoint_func *old, *tp_funcs;

	tp_funcs = rcu_dereference_protected(tp->funcs,
			lockdep_is_held(&tracepoints_mutex));
	old = func_remove(&tp_funcs, func);
	if (IS_ERR(old)) {
		WARN_ON_ONCE(PTR_ERR(old) != -ENOMEM);
		return PTR_ERR(old);
	}

	if (!tp_funcs) {
		/* Removed last function */
		if (tp->unregfunc && static_key_enabled(&tp->key))
			tp->unregfunc();

		if (static_key_enabled(&tp->key))
			static_key_slow_dec(&tp->key);
	}
	rcu_assign_pointer(tp->funcs, tp_funcs);
	release_probes(old);
	return 0;
}

/**
 * tracepoint_probe_register_prio -  Connect a probe to a tracepoint with priority
 * @tp: tracepoint
 * @probe: probe handler
 * @data: tracepoint data
 * @prio: priority of this function over other registered functions
 *
 * Returns 0 if ok, error value on error.
 * Note: if @tp is within a module, the caller is responsible for
 * unregistering the probe before the module is gone. This can be
 * performed either with a tracepoint module going notifier, or from
 * within module exit functions.
 */
int tracepoint_probe_register_prio(struct tracepoint *tp, void *probe,
				   void *data, int prio)
{
	struct tracepoint_func tp_func;
	int ret;

	mutex_lock(&tracepoints_mutex);
	tp_func.func = probe;
	tp_func.data = data;
	tp_func.prio = prio;
	ret = tracepoint_add_func(tp, &tp_func, prio);
	mutex_unlock(&tracepoints_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(tracepoint_probe_register_prio);

/**
 * tracepoint_probe_register -  Connect a probe to a tracepoint
 * @tp: tracepoint
 * @probe: probe handler
 * @data: tracepoint data
 *
 * Returns 0 if ok, error value on error.
 * Note: if @tp is within a module, the caller is responsible for
 * unregistering the probe before the module is gone. This can be
 * performed either with a tracepoint module going notifier, or from
 * within module exit functions.
 */
int tracepoint_probe_register(struct tracepoint *tp, void *probe, void *data)
{
	return tracepoint_probe_register_prio(tp, probe, data, TRACEPOINT_DEFAULT_PRIO);
}
EXPORT_SYMBOL_GPL(tracepoint_probe_register);

/**
 * tracepoint_probe_unregister -  Disconnect a probe from a tracepoint
 * @tp: tracepoint
 * @probe: probe function pointer
 * @data: tracepoint data
 *
 * Returns 0 if ok, error value on error.
 */
int tracepoint_probe_unregister(struct tracepoint *tp, void *probe, void *data)
{
	struct tracepoint_func tp_func;
	int ret;

	mutex_lock(&tracepoints_mutex);
	tp_func.func = probe;
	tp_func.data = data;
	ret = tracepoint_remove_func(tp, &tp_func);
	mutex_unlock(&tracepoints_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(tracepoint_probe_unregister);

static void for_each_tracepoint_range(
		tracepoint_ptr_t *begin, tracepoint_ptr_t *end,
		void (*fct)(struct tracepoint *tp, void *priv),
		void *priv)
{
	tracepoint_ptr_t *iter;

	if (!begin)
		return;
	for (iter = begin; iter < end; iter++)
		fct(tracepoint_ptr_deref(iter), priv);
}

#ifdef CONFIG_MODULES
bool trace_module_has_bad_taint(struct module *mod)
{
	return mod->taints & ~((1 << TAINT_OOT_MODULE) | (1 << TAINT_CRAP) |
			       (1 << TAINT_UNSIGNED_MODULE));
}

static BLOCKING_NOTIFIER_HEAD(tracepoint_notify_list);

/**
 * register_tracepoint_notifier - register tracepoint coming/going notifier
 * @nb: notifier block
 *
 * Notifiers registered with this function are called on module
 * coming/going with the tracepoint_module_list_mutex held.
 * The notifier block callback should expect a "struct tp_module" data
 * pointer.
 */
int register_tracepoint_module_notifier(struct notifier_block *nb)
{
	struct tp_module *tp_mod;
	int ret;

	mutex_lock(&tracepoint_module_list_mutex);
	ret = blocking_notifier_chain_register(&tracepoint_notify_list, nb);
	if (ret)
		goto end;
	list_for_each_entry(tp_mod, &tracepoint_module_list, list)
		(void) nb->notifier_call(nb, MODULE_STATE_COMING, tp_mod);
end:
	mutex_unlock(&tracepoint_module_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(register_tracepoint_module_notifier);

/**
 * unregister_tracepoint_notifier - unregister tracepoint coming/going notifier
 * @nb: notifier block
 *
 * The notifier block callback should expect a "struct tp_module" data
 * pointer.
 */
int unregister_tracepoint_module_notifier(struct notifier_block *nb)
{
	struct tp_module *tp_mod;
	int ret;

	mutex_lock(&tracepoint_module_list_mutex);
	ret = blocking_notifier_chain_unregister(&tracepoint_notify_list, nb);
	if (ret)
		goto end;
	list_for_each_entry(tp_mod, &tracepoint_module_list, list)
		(void) nb->notifier_call(nb, MODULE_STATE_GOING, tp_mod);
end:
	mutex_unlock(&tracepoint_module_list_mutex);
	return ret;

}
EXPORT_SYMBOL_GPL(unregister_tracepoint_module_notifier);

/*
 * Ensure the tracer unregistered the module's probes before the module
 * teardown is performed. Prevents leaks of probe and data pointers.
 */
static void tp_module_going_check_quiescent(struct tracepoint *tp, void *priv)
{
	WARN_ON_ONCE(tp->funcs);
}

static int tracepoint_module_coming(struct module *mod)
{
	struct tp_module *tp_mod;
	int ret = 0;

	if (!mod->num_tracepoints)
		return 0;

	/*
	 * We skip modules that taint the kernel, especially those with different
	 * module headers (for forced load), to make sure we don't cause a crash.
	 * Staging, out-of-tree, and unsigned GPL modules are fine.
	 */
	if (trace_module_has_bad_taint(mod))
		return 0;
	mutex_lock(&tracepoint_module_list_mutex);
	tp_mod = kmalloc(sizeof(struct tp_module), GFP_KERNEL);
	if (!tp_mod) {
		ret = -ENOMEM;
		goto end;
	}
	tp_mod->mod = mod;
	list_add_tail(&tp_mod->list, &tracepoint_module_list);
	blocking_notifier_call_chain(&tracepoint_notify_list,
			MODULE_STATE_COMING, tp_mod);
end:
	mutex_unlock(&tracepoint_module_list_mutex);
	return ret;
}

static void tracepoint_module_going(struct module *mod)
{
	struct tp_module *tp_mod;

	if (!mod->num_tracepoints)
		return;

	mutex_lock(&tracepoint_module_list_mutex);
	list_for_each_entry(tp_mod, &tracepoint_module_list, list) {
		if (tp_mod->mod == mod) {
			blocking_notifier_call_chain(&tracepoint_notify_list,
					MODULE_STATE_GOING, tp_mod);
			list_del(&tp_mod->list);
			kfree(tp_mod);
			/*
			 * Called the going notifier before checking for
			 * quiescence.
			 */
			for_each_tracepoint_range(mod->tracepoints_ptrs,
				mod->tracepoints_ptrs + mod->num_tracepoints,
				tp_module_going_check_quiescent, NULL);
			break;
		}
	}
	/*
	 * In the case of modules that were tainted at "coming", we'll simply
	 * walk through the list without finding it. We cannot use the "tainted"
	 * flag on "going", in case a module taints the kernel only after being
	 * loaded.
	 */
	mutex_unlock(&tracepoint_module_list_mutex);
}

static int tracepoint_module_notify(struct notifier_block *self,
		unsigned long val, void *data)
{
	struct module *mod = data;
	int ret = 0;

	switch (val) {
	case MODULE_STATE_COMING:
		ret = tracepoint_module_coming(mod);
		break;
	case MODULE_STATE_LIVE:
		break;
	case MODULE_STATE_GOING:
		tracepoint_module_going(mod);
		break;
	case MODULE_STATE_UNFORMED:
		break;
	}
	return ret;
}

static struct notifier_block tracepoint_module_nb = {
	.notifier_call = tracepoint_module_notify,
	.priority = 0,
};

static __init int init_tracepoints(void)
{
	int ret;

	ret = register_module_notifier(&tracepoint_module_nb);
	if (ret)
		pr_warn("Failed to register tracepoint module enter notifier\n");

	return ret;
}
__initcall(init_tracepoints);
#endif /* CONFIG_MODULES */

/**
 * for_each_kernel_tracepoint - iteration on all kernel tracepoints
 * @fct: callback
 * @priv: private data
 */
void for_each_kernel_tracepoint(void (*fct)(struct tracepoint *tp, void *priv),
		void *priv)
{
	for_each_tracepoint_range(__start___tracepoints_ptrs,
		__stop___tracepoints_ptrs, fct, priv);
}
EXPORT_SYMBOL_GPL(for_each_kernel_tracepoint);

#ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS

/* NB: reg/unreg are called while guarded with the tracepoints_mutex */
static int sys_tracepoint_refcount;

int syscall_regfunc(void)
{
	struct task_struct *p, *t;

	if (!sys_tracepoint_refcount) {
		read_lock(&tasklist_lock);
		for_each_process_thread(p, t) {
			set_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT);
		}
		read_unlock(&tasklist_lock);
	}
	sys_tracepoint_refcount++;

	return 0;
}

void syscall_unregfunc(void)
{
	struct task_struct *p, *t;

	sys_tracepoint_refcount--;
	if (!sys_tracepoint_refcount) {
		read_lock(&tasklist_lock);
		for_each_process_thread(p, t) {
			clear_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT);
		}
		read_unlock(&tasklist_lock);
	}
}
#endif
back to top