Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 5c297ab275e1dd929f9b8db7c86d957ddf0fd6dd authored by Tom Walker on 07 September 2021, 14:31:53 UTC, committed by Tom Walker on 07 September 2021, 14:31:53 UTC
Added all analyses, streamlined pipelines and improved statistical models.
1 parent bd5cb92
  • Files
  • Changes
  • 75c5ddb
  • /
  • r_code
  • /
  • small_functions.R
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:5c297ab275e1dd929f9b8db7c86d957ddf0fd6dd
directory badge Iframe embedding
swh:1:dir:dfb93ce370415abc5631ba8b21d4b08cca03d774
content badge Iframe embedding
swh:1:cnt:c32dbe91faf57bd5e3f6511390e0e444de4a4852

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
small_functions.R
################################################################################
#### Project: Lowland plant migrations alpine soil C loss
#### Title:   Small functions
#### Author:  Tom Walker (thomas.walker@usys.ethz.ch)
#### Date:    26 May 2021
#### ---------------------------------------------------------------------------

# calculate CWMs for trait data
add_cwm_traits <- function(.x, .y){
  # apply a weighted average to each  bin
  cwm_list <- lapply(.y, function(y){
    match_trait <- match(colnames(.x), colnames(y))
    trait_value <- y[, match_trait] %>% as.matrix %>% as.vector
    cwm_trait <- .x %>%
      apply(1, function(.x){weighted.mean(w = .x, x = trait_value)})
    return(cwm_trait)
  })
  # bind into data frame
  cwm_bound <- do.call(cbind, cwm_list) %>% as.data.frame %>% as_tibble
  # return
  return(cwm_bound)
}

# calculate biomass from cover data
biomass <- function(x, y){
  # index for bare ground
  bare_index <- colnames(x) %in% "bare.ground"
  # select vegetation types
  bio_out <- data.frame(vege_bio = x[, !bare_index] %>% rowSums,
                        focal_bio = rowSums(y)) %>%
    as_tibble %>%
    mutate(bkgnd_bio = vege_bio - focal_bio)
  # return
  return(bio_out)
}

# format treatment information from collar data to grid-id
join_treats <- function(.x, .y){
  out <- left_join(.x, .y) %>%
    # format treatments correctly
    mutate(elevation = substr(marc_treatment, 1, 1),
           block = paste0(elevation, num_in_string(marc_treatment)),
           treatment = substr(marc_treatment, nchar(marc_treatment), nchar(marc_treatment))) %>%
    # add leading zero to block
    mutate(block = ifelse(
      nchar(block) == 3,
      block,
      paste0(substr(block, 1, 1), "0", substr(block, 2, 2))
    )) %>%
    # select columns
    select(grid_id, elevation:treatment)
  return(out)
}

# match soil data rows to plant data treatments
match_soil <- function(.x, .y, match){
  # matching variables
  match_by <- c("elevation","block", "treatment")
  names(match_by) <- c("elevation", "block", match)
  # join data and return
  out <- left_join(.x, .y, by = match_by) %>%
    select(DOC:CUE)
  return(out)
}

# get number from string
num_in_string <- function(x){
  out <- str_extract_all(x, "[:digit:]", simplify = T) %>%
    apply(1, paste0, collapse = "")
  return(out)
}

#  take DF, calculate relative abundance, transpose, make DF
ra_t_df <- function(x){
  out <- x %>%
    apply(1, function(x) x/sum(x, na.rm = T)) %>%
    t
  out[is.na(out)] <- 0
  out <- as_tibble(out)
  return(out)
}

# subset focal data set by site-presences
select_focals <- function(focals, site){
  tf <- focals[, site] == "Y"
  out <- focals %>% filter(tf) %>%
    transmute(accepted_name = make.names(accepted_name))
  return(out)
}


# subset, make column names, spread ----
sub_col_spread <- function(traits, subset){
  # select subset
  now <- traits[, c("accepted_name", subset)]
  colnames(now) <- c("accepted_name", "value")
  out <- now %>%
    pivot_wider(names_from = accepted_name, values_from = value)
  return(out)
}

# subset cover data for background plants only
subset_bckgnd <- function(.x, .y){
  match_focals <- colnames(.x) %in% .y$accepted_name
  out <- .x[, !match_focals]
  return(out)
}

# subset cover data for focals only 
subset_focals <- function(.x, .y){
  match_focals <- colnames(.x) %in% .y$accepted_name
  out <- .x[, match_focals]
  return(out)
}
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API