https://github.com/torvalds/linux
Revision 5e911e2c06bd8c17df29147a5e2d4b17fafda024 authored by Moshe Shemesh on 07 April 2020, 14:38:28 UTC, committed by Saeed Mahameed on 23 May 2020, 00:28:54 UTC
On sq closure when we free its descriptors, we should also update netdev
txq on completions which would not arrive. Otherwise if we reopen sqs
and attach them back, for example on fw fatal recovery flow, we may get
tx timeout.

Fixes: 29429f3300a3 ("net/mlx5e: Timeout if SQ doesn't flush during close")
Signed-off-by: Moshe Shemesh <moshe@mellanox.com>
Reviewed-by: Tariq Toukan <tariqt@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
1 parent 9ca4153
Raw File
Tip revision: 5e911e2c06bd8c17df29147a5e2d4b17fafda024 authored by Moshe Shemesh on 07 April 2020, 14:38:28 UTC
net/mlx5e: Update netdev txq on completions during closure
Tip revision: 5e911e2
balloon_compaction.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * mm/balloon_compaction.c
 *
 * Common interface for making balloon pages movable by compaction.
 *
 * Copyright (C) 2012, Red Hat, Inc.  Rafael Aquini <aquini@redhat.com>
 */
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/balloon_compaction.h>

static void balloon_page_enqueue_one(struct balloon_dev_info *b_dev_info,
				     struct page *page)
{
	/*
	 * Block others from accessing the 'page' when we get around to
	 * establishing additional references. We should be the only one
	 * holding a reference to the 'page' at this point. If we are not, then
	 * memory corruption is possible and we should stop execution.
	 */
	BUG_ON(!trylock_page(page));
	balloon_page_insert(b_dev_info, page);
	unlock_page(page);
	__count_vm_event(BALLOON_INFLATE);
}

/**
 * balloon_page_list_enqueue() - inserts a list of pages into the balloon page
 *				 list.
 * @b_dev_info: balloon device descriptor where we will insert a new page to
 * @pages: pages to enqueue - allocated using balloon_page_alloc.
 *
 * Driver must call this function to properly enqueue balloon pages before
 * definitively removing them from the guest system.
 *
 * Return: number of pages that were enqueued.
 */
size_t balloon_page_list_enqueue(struct balloon_dev_info *b_dev_info,
				 struct list_head *pages)
{
	struct page *page, *tmp;
	unsigned long flags;
	size_t n_pages = 0;

	spin_lock_irqsave(&b_dev_info->pages_lock, flags);
	list_for_each_entry_safe(page, tmp, pages, lru) {
		list_del(&page->lru);
		balloon_page_enqueue_one(b_dev_info, page);
		n_pages++;
	}
	spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
	return n_pages;
}
EXPORT_SYMBOL_GPL(balloon_page_list_enqueue);

/**
 * balloon_page_list_dequeue() - removes pages from balloon's page list and
 *				 returns a list of the pages.
 * @b_dev_info: balloon device decriptor where we will grab a page from.
 * @pages: pointer to the list of pages that would be returned to the caller.
 * @n_req_pages: number of requested pages.
 *
 * Driver must call this function to properly de-allocate a previous enlisted
 * balloon pages before definitively releasing it back to the guest system.
 * This function tries to remove @n_req_pages from the ballooned pages and
 * return them to the caller in the @pages list.
 *
 * Note that this function may fail to dequeue some pages even if the balloon
 * isn't empty - since the page list can be temporarily empty due to compaction
 * of isolated pages.
 *
 * Return: number of pages that were added to the @pages list.
 */
size_t balloon_page_list_dequeue(struct balloon_dev_info *b_dev_info,
				 struct list_head *pages, size_t n_req_pages)
{
	struct page *page, *tmp;
	unsigned long flags;
	size_t n_pages = 0;

	spin_lock_irqsave(&b_dev_info->pages_lock, flags);
	list_for_each_entry_safe(page, tmp, &b_dev_info->pages, lru) {
		if (n_pages == n_req_pages)
			break;

		/*
		 * Block others from accessing the 'page' while we get around to
		 * establishing additional references and preparing the 'page'
		 * to be released by the balloon driver.
		 */
		if (!trylock_page(page))
			continue;

		if (IS_ENABLED(CONFIG_BALLOON_COMPACTION) &&
		    PageIsolated(page)) {
			/* raced with isolation */
			unlock_page(page);
			continue;
		}
		balloon_page_delete(page);
		__count_vm_event(BALLOON_DEFLATE);
		list_add(&page->lru, pages);
		unlock_page(page);
		n_pages++;
	}
	spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);

	return n_pages;
}
EXPORT_SYMBOL_GPL(balloon_page_list_dequeue);

/*
 * balloon_page_alloc - allocates a new page for insertion into the balloon
 *			page list.
 *
 * Driver must call this function to properly allocate a new balloon page.
 * Driver must call balloon_page_enqueue before definitively removing the page
 * from the guest system.
 *
 * Return: struct page for the allocated page or NULL on allocation failure.
 */
struct page *balloon_page_alloc(void)
{
	struct page *page = alloc_page(balloon_mapping_gfp_mask() |
				       __GFP_NOMEMALLOC | __GFP_NORETRY |
				       __GFP_NOWARN);
	return page;
}
EXPORT_SYMBOL_GPL(balloon_page_alloc);

/*
 * balloon_page_enqueue - inserts a new page into the balloon page list.
 *
 * @b_dev_info: balloon device descriptor where we will insert a new page
 * @page: new page to enqueue - allocated using balloon_page_alloc.
 *
 * Drivers must call this function to properly enqueue a new allocated balloon
 * page before definitively removing the page from the guest system.
 *
 * Drivers must not call balloon_page_enqueue on pages that have been pushed to
 * a list with balloon_page_push before removing them with balloon_page_pop. To
 * enqueue a list of pages, use balloon_page_list_enqueue instead.
 */
void balloon_page_enqueue(struct balloon_dev_info *b_dev_info,
			  struct page *page)
{
	unsigned long flags;

	spin_lock_irqsave(&b_dev_info->pages_lock, flags);
	balloon_page_enqueue_one(b_dev_info, page);
	spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
}
EXPORT_SYMBOL_GPL(balloon_page_enqueue);

/*
 * balloon_page_dequeue - removes a page from balloon's page list and returns
 *			  its address to allow the driver to release the page.
 * @b_dev_info: balloon device decriptor where we will grab a page from.
 *
 * Driver must call this function to properly dequeue a previously enqueued page
 * before definitively releasing it back to the guest system.
 *
 * Caller must perform its own accounting to ensure that this
 * function is called only if some pages are actually enqueued.
 *
 * Note that this function may fail to dequeue some pages even if there are
 * some enqueued pages - since the page list can be temporarily empty due to
 * the compaction of isolated pages.
 *
 * TODO: remove the caller accounting requirements, and allow caller to wait
 * until all pages can be dequeued.
 *
 * Return: struct page for the dequeued page, or NULL if no page was dequeued.
 */
struct page *balloon_page_dequeue(struct balloon_dev_info *b_dev_info)
{
	unsigned long flags;
	LIST_HEAD(pages);
	int n_pages;

	n_pages = balloon_page_list_dequeue(b_dev_info, &pages, 1);

	if (n_pages != 1) {
		/*
		 * If we are unable to dequeue a balloon page because the page
		 * list is empty and there are no isolated pages, then something
		 * went out of track and some balloon pages are lost.
		 * BUG() here, otherwise the balloon driver may get stuck in
		 * an infinite loop while attempting to release all its pages.
		 */
		spin_lock_irqsave(&b_dev_info->pages_lock, flags);
		if (unlikely(list_empty(&b_dev_info->pages) &&
			     !b_dev_info->isolated_pages))
			BUG();
		spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
		return NULL;
	}
	return list_first_entry(&pages, struct page, lru);
}
EXPORT_SYMBOL_GPL(balloon_page_dequeue);

#ifdef CONFIG_BALLOON_COMPACTION

bool balloon_page_isolate(struct page *page, isolate_mode_t mode)

{
	struct balloon_dev_info *b_dev_info = balloon_page_device(page);
	unsigned long flags;

	spin_lock_irqsave(&b_dev_info->pages_lock, flags);
	list_del(&page->lru);
	b_dev_info->isolated_pages++;
	spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);

	return true;
}

void balloon_page_putback(struct page *page)
{
	struct balloon_dev_info *b_dev_info = balloon_page_device(page);
	unsigned long flags;

	spin_lock_irqsave(&b_dev_info->pages_lock, flags);
	list_add(&page->lru, &b_dev_info->pages);
	b_dev_info->isolated_pages--;
	spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
}


/* move_to_new_page() counterpart for a ballooned page */
int balloon_page_migrate(struct address_space *mapping,
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
{
	struct balloon_dev_info *balloon = balloon_page_device(page);

	/*
	 * We can not easily support the no copy case here so ignore it as it
	 * is unlikely to be used with balloon pages. See include/linux/hmm.h
	 * for a user of the MIGRATE_SYNC_NO_COPY mode.
	 */
	if (mode == MIGRATE_SYNC_NO_COPY)
		return -EINVAL;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);

	return balloon->migratepage(balloon, newpage, page, mode);
}

const struct address_space_operations balloon_aops = {
	.migratepage = balloon_page_migrate,
	.isolate_page = balloon_page_isolate,
	.putback_page = balloon_page_putback,
};
EXPORT_SYMBOL_GPL(balloon_aops);

#endif /* CONFIG_BALLOON_COMPACTION */
back to top