Revision 5f4fc6d440d77a2cf74fe4ea56955674ac7e35e7 authored by Linus Torvalds on 19 July 2019, 17:06:06 UTC, committed by Linus Torvalds on 19 July 2019, 17:06:06 UTC
Pull networking fixes from David Miller:

 1) Fix AF_XDP cq entry leak, from Ilya Maximets.

 2) Fix handling of PHY power-down on RTL8411B, from Heiner Kallweit.

 3) Add some new PCI IDs to iwlwifi, from Ihab Zhaika.

 4) Fix handling of neigh timers wrt. entries added by userspace, from
    Lorenzo Bianconi.

 5) Various cases of missing of_node_put(), from Nishka Dasgupta.

 6) The new NET_ACT_CT needs to depend upon NF_NAT, from Yue Haibing.

 7) Various RDS layer fixes, from Gerd Rausch.

 8) Fix some more fallout from TCQ_F_CAN_BYPASS generalization, from
    Cong Wang.

 9) Fix FIB source validation checks over loopback, also from Cong Wang.

10) Use promisc for unsupported number of filters, from Justin Chen.

11) Missing sibling route unlink on failure in ipv6, from Ido Schimmel.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (90 commits)
  tcp: fix tcp_set_congestion_control() use from bpf hook
  ag71xx: fix return value check in ag71xx_probe()
  ag71xx: fix error return code in ag71xx_probe()
  usb: qmi_wwan: add D-Link DWM-222 A2 device ID
  bnxt_en: Fix VNIC accounting when enabling aRFS on 57500 chips.
  net: dsa: sja1105: Fix missing unlock on error in sk_buff()
  gve: replace kfree with kvfree
  selftests/bpf: fix test_xdp_noinline on s390
  selftests/bpf: fix "valid read map access into a read-only array 1" on s390
  net/mlx5: Replace kfree with kvfree
  MAINTAINERS: update netsec driver
  ipv6: Unlink sibling route in case of failure
  liquidio: Replace vmalloc + memset with vzalloc
  udp: Fix typo in net/ipv4/udp.c
  net: bcmgenet: use promisc for unsupported filters
  ipv6: rt6_check should return NULL if 'from' is NULL
  tipc: initialize 'validated' field of received packets
  selftests: add a test case for rp_filter
  fib: relax source validation check for loopback packets
  mlxsw: spectrum: Do not process learned records with a dummy FID
  ...
2 parent s 249be85 + 8d650cd
Raw File
dynamic_queue_limits.c
// SPDX-License-Identifier: GPL-2.0
/*
 * Dynamic byte queue limits.  See include/linux/dynamic_queue_limits.h
 *
 * Copyright (c) 2011, Tom Herbert <therbert@google.com>
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/dynamic_queue_limits.h>
#include <linux/compiler.h>
#include <linux/export.h>

#define POSDIFF(A, B) ((int)((A) - (B)) > 0 ? (A) - (B) : 0)
#define AFTER_EQ(A, B) ((int)((A) - (B)) >= 0)

/* Records completed count and recalculates the queue limit */
void dql_completed(struct dql *dql, unsigned int count)
{
	unsigned int inprogress, prev_inprogress, limit;
	unsigned int ovlimit, completed, num_queued;
	bool all_prev_completed;

	num_queued = READ_ONCE(dql->num_queued);

	/* Can't complete more than what's in queue */
	BUG_ON(count > num_queued - dql->num_completed);

	completed = dql->num_completed + count;
	limit = dql->limit;
	ovlimit = POSDIFF(num_queued - dql->num_completed, limit);
	inprogress = num_queued - completed;
	prev_inprogress = dql->prev_num_queued - dql->num_completed;
	all_prev_completed = AFTER_EQ(completed, dql->prev_num_queued);

	if ((ovlimit && !inprogress) ||
	    (dql->prev_ovlimit && all_prev_completed)) {
		/*
		 * Queue considered starved if:
		 *   - The queue was over-limit in the last interval,
		 *     and there is no more data in the queue.
		 *  OR
		 *   - The queue was over-limit in the previous interval and
		 *     when enqueuing it was possible that all queued data
		 *     had been consumed.  This covers the case when queue
		 *     may have becomes starved between completion processing
		 *     running and next time enqueue was scheduled.
		 *
		 *     When queue is starved increase the limit by the amount
		 *     of bytes both sent and completed in the last interval,
		 *     plus any previous over-limit.
		 */
		limit += POSDIFF(completed, dql->prev_num_queued) +
		     dql->prev_ovlimit;
		dql->slack_start_time = jiffies;
		dql->lowest_slack = UINT_MAX;
	} else if (inprogress && prev_inprogress && !all_prev_completed) {
		/*
		 * Queue was not starved, check if the limit can be decreased.
		 * A decrease is only considered if the queue has been busy in
		 * the whole interval (the check above).
		 *
		 * If there is slack, the amount of execess data queued above
		 * the the amount needed to prevent starvation, the queue limit
		 * can be decreased.  To avoid hysteresis we consider the
		 * minimum amount of slack found over several iterations of the
		 * completion routine.
		 */
		unsigned int slack, slack_last_objs;

		/*
		 * Slack is the maximum of
		 *   - The queue limit plus previous over-limit minus twice
		 *     the number of objects completed.  Note that two times
		 *     number of completed bytes is a basis for an upper bound
		 *     of the limit.
		 *   - Portion of objects in the last queuing operation that
		 *     was not part of non-zero previous over-limit.  That is
		 *     "round down" by non-overlimit portion of the last
		 *     queueing operation.
		 */
		slack = POSDIFF(limit + dql->prev_ovlimit,
		    2 * (completed - dql->num_completed));
		slack_last_objs = dql->prev_ovlimit ?
		    POSDIFF(dql->prev_last_obj_cnt, dql->prev_ovlimit) : 0;

		slack = max(slack, slack_last_objs);

		if (slack < dql->lowest_slack)
			dql->lowest_slack = slack;

		if (time_after(jiffies,
			       dql->slack_start_time + dql->slack_hold_time)) {
			limit = POSDIFF(limit, dql->lowest_slack);
			dql->slack_start_time = jiffies;
			dql->lowest_slack = UINT_MAX;
		}
	}

	/* Enforce bounds on limit */
	limit = clamp(limit, dql->min_limit, dql->max_limit);

	if (limit != dql->limit) {
		dql->limit = limit;
		ovlimit = 0;
	}

	dql->adj_limit = limit + completed;
	dql->prev_ovlimit = ovlimit;
	dql->prev_last_obj_cnt = dql->last_obj_cnt;
	dql->num_completed = completed;
	dql->prev_num_queued = num_queued;
}
EXPORT_SYMBOL(dql_completed);

void dql_reset(struct dql *dql)
{
	/* Reset all dynamic values */
	dql->limit = 0;
	dql->num_queued = 0;
	dql->num_completed = 0;
	dql->last_obj_cnt = 0;
	dql->prev_num_queued = 0;
	dql->prev_last_obj_cnt = 0;
	dql->prev_ovlimit = 0;
	dql->lowest_slack = UINT_MAX;
	dql->slack_start_time = jiffies;
}
EXPORT_SYMBOL(dql_reset);

void dql_init(struct dql *dql, unsigned int hold_time)
{
	dql->max_limit = DQL_MAX_LIMIT;
	dql->min_limit = 0;
	dql->slack_hold_time = hold_time;
	dql_reset(dql);
}
EXPORT_SYMBOL(dql_init);
back to top