Revision 5f56a74cc0a6d9b9f8ba89cea29cd7c4774cb2b1 authored by Ard Biesheuvel on 20 September 2022, 15:08:23 UTC, committed by Ard Biesheuvel on 22 September 2022, 08:15:44 UTC
We currently check the MokSBState variable to decide whether we should
treat UEFI secure boot as being disabled, even if the firmware thinks
otherwise. This is used by shim to indicate that it is not checking
signatures on boot images. In the kernel, we use this to relax lockdown
policies.

However, in cases where shim is not even being used, we don't want this
variable to interfere with lockdown, given that the variable may be
non-volatile and therefore persist across a reboot. This means setting
it once will persistently disable lockdown checks on a given system.

So switch to the mirrored version of this variable, called MokSBStateRT,
which is supposed to be volatile, and this is something we can check.

Cc: <stable@vger.kernel.org> # v4.19+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Reviewed-by: Peter Jones <pjones@redhat.com>
1 parent 63bf28c
Raw File
shmem.c
/*
 * Resizable virtual memory filesystem for Linux.
 *
 * Copyright (C) 2000 Linus Torvalds.
 *		 2000 Transmeta Corp.
 *		 2000-2001 Christoph Rohland
 *		 2000-2001 SAP AG
 *		 2002 Red Hat Inc.
 * Copyright (C) 2002-2011 Hugh Dickins.
 * Copyright (C) 2011 Google Inc.
 * Copyright (C) 2002-2005 VERITAS Software Corporation.
 * Copyright (C) 2004 Andi Kleen, SuSE Labs
 *
 * Extended attribute support for tmpfs:
 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
 *
 * tiny-shmem:
 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
 *
 * This file is released under the GPL.
 */

#include <linux/fs.h>
#include <linux/init.h>
#include <linux/vfs.h>
#include <linux/mount.h>
#include <linux/ramfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/fileattr.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/hugetlb.h>
#include <linux/fs_parser.h>
#include <linux/swapfile.h>
#include "swap.h"

static struct vfsmount *shm_mnt;

#ifdef CONFIG_SHMEM
/*
 * This virtual memory filesystem is heavily based on the ramfs. It
 * extends ramfs by the ability to use swap and honor resource limits
 * which makes it a completely usable filesystem.
 */

#include <linux/xattr.h>
#include <linux/exportfs.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/shmem_fs.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/percpu_counter.h>
#include <linux/falloc.h>
#include <linux/splice.h>
#include <linux/security.h>
#include <linux/swapops.h>
#include <linux/mempolicy.h>
#include <linux/namei.h>
#include <linux/ctype.h>
#include <linux/migrate.h>
#include <linux/highmem.h>
#include <linux/seq_file.h>
#include <linux/magic.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <uapi/linux/memfd.h>
#include <linux/userfaultfd_k.h>
#include <linux/rmap.h>
#include <linux/uuid.h>

#include <linux/uaccess.h>

#include "internal.h"

#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)

/* Pretend that each entry is of this size in directory's i_size */
#define BOGO_DIRENT_SIZE 20

/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
#define SHORT_SYMLINK_LEN 128

/*
 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
 * inode->i_private (with i_rwsem making sure that it has only one user at
 * a time): we would prefer not to enlarge the shmem inode just for that.
 */
struct shmem_falloc {
	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
	pgoff_t start;		/* start of range currently being fallocated */
	pgoff_t next;		/* the next page offset to be fallocated */
	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
};

struct shmem_options {
	unsigned long long blocks;
	unsigned long long inodes;
	struct mempolicy *mpol;
	kuid_t uid;
	kgid_t gid;
	umode_t mode;
	bool full_inums;
	int huge;
	int seen;
#define SHMEM_SEEN_BLOCKS 1
#define SHMEM_SEEN_INODES 2
#define SHMEM_SEEN_HUGE 4
#define SHMEM_SEEN_INUMS 8
};

#ifdef CONFIG_TMPFS
static unsigned long shmem_default_max_blocks(void)
{
	return totalram_pages() / 2;
}

static unsigned long shmem_default_max_inodes(void)
{
	unsigned long nr_pages = totalram_pages();

	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
}
#endif

static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
			     struct folio **foliop, enum sgp_type sgp,
			     gfp_t gfp, struct vm_area_struct *vma,
			     vm_fault_t *fault_type);
static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
		struct page **pagep, enum sgp_type sgp,
		gfp_t gfp, struct vm_area_struct *vma,
		struct vm_fault *vmf, vm_fault_t *fault_type);

int shmem_getpage(struct inode *inode, pgoff_t index,
		struct page **pagep, enum sgp_type sgp)
{
	return shmem_getpage_gfp(inode, index, pagep, sgp,
		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
}

static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
{
	return sb->s_fs_info;
}

/*
 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 * for shared memory and for shared anonymous (/dev/zero) mappings
 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 * consistent with the pre-accounting of private mappings ...
 */
static inline int shmem_acct_size(unsigned long flags, loff_t size)
{
	return (flags & VM_NORESERVE) ?
		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
}

static inline void shmem_unacct_size(unsigned long flags, loff_t size)
{
	if (!(flags & VM_NORESERVE))
		vm_unacct_memory(VM_ACCT(size));
}

static inline int shmem_reacct_size(unsigned long flags,
		loff_t oldsize, loff_t newsize)
{
	if (!(flags & VM_NORESERVE)) {
		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
			return security_vm_enough_memory_mm(current->mm,
					VM_ACCT(newsize) - VM_ACCT(oldsize));
		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
	}
	return 0;
}

/*
 * ... whereas tmpfs objects are accounted incrementally as
 * pages are allocated, in order to allow large sparse files.
 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 */
static inline int shmem_acct_block(unsigned long flags, long pages)
{
	if (!(flags & VM_NORESERVE))
		return 0;

	return security_vm_enough_memory_mm(current->mm,
			pages * VM_ACCT(PAGE_SIZE));
}

static inline void shmem_unacct_blocks(unsigned long flags, long pages)
{
	if (flags & VM_NORESERVE)
		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
}

static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);

	if (shmem_acct_block(info->flags, pages))
		return false;

	if (sbinfo->max_blocks) {
		if (percpu_counter_compare(&sbinfo->used_blocks,
					   sbinfo->max_blocks - pages) > 0)
			goto unacct;
		percpu_counter_add(&sbinfo->used_blocks, pages);
	}

	return true;

unacct:
	shmem_unacct_blocks(info->flags, pages);
	return false;
}

static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);

	if (sbinfo->max_blocks)
		percpu_counter_sub(&sbinfo->used_blocks, pages);
	shmem_unacct_blocks(info->flags, pages);
}

static const struct super_operations shmem_ops;
const struct address_space_operations shmem_aops;
static const struct file_operations shmem_file_operations;
static const struct inode_operations shmem_inode_operations;
static const struct inode_operations shmem_dir_inode_operations;
static const struct inode_operations shmem_special_inode_operations;
static const struct vm_operations_struct shmem_vm_ops;
static struct file_system_type shmem_fs_type;

bool vma_is_shmem(struct vm_area_struct *vma)
{
	return vma->vm_ops == &shmem_vm_ops;
}

static LIST_HEAD(shmem_swaplist);
static DEFINE_MUTEX(shmem_swaplist_mutex);

/*
 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 * produces a novel ino for the newly allocated inode.
 *
 * It may also be called when making a hard link to permit the space needed by
 * each dentry. However, in that case, no new inode number is needed since that
 * internally draws from another pool of inode numbers (currently global
 * get_next_ino()). This case is indicated by passing NULL as inop.
 */
#define SHMEM_INO_BATCH 1024
static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
	ino_t ino;

	if (!(sb->s_flags & SB_KERNMOUNT)) {
		raw_spin_lock(&sbinfo->stat_lock);
		if (sbinfo->max_inodes) {
			if (!sbinfo->free_inodes) {
				raw_spin_unlock(&sbinfo->stat_lock);
				return -ENOSPC;
			}
			sbinfo->free_inodes--;
		}
		if (inop) {
			ino = sbinfo->next_ino++;
			if (unlikely(is_zero_ino(ino)))
				ino = sbinfo->next_ino++;
			if (unlikely(!sbinfo->full_inums &&
				     ino > UINT_MAX)) {
				/*
				 * Emulate get_next_ino uint wraparound for
				 * compatibility
				 */
				if (IS_ENABLED(CONFIG_64BIT))
					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
						__func__, MINOR(sb->s_dev));
				sbinfo->next_ino = 1;
				ino = sbinfo->next_ino++;
			}
			*inop = ino;
		}
		raw_spin_unlock(&sbinfo->stat_lock);
	} else if (inop) {
		/*
		 * __shmem_file_setup, one of our callers, is lock-free: it
		 * doesn't hold stat_lock in shmem_reserve_inode since
		 * max_inodes is always 0, and is called from potentially
		 * unknown contexts. As such, use a per-cpu batched allocator
		 * which doesn't require the per-sb stat_lock unless we are at
		 * the batch boundary.
		 *
		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
		 * shmem mounts are not exposed to userspace, so we don't need
		 * to worry about things like glibc compatibility.
		 */
		ino_t *next_ino;

		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
		ino = *next_ino;
		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
			raw_spin_lock(&sbinfo->stat_lock);
			ino = sbinfo->next_ino;
			sbinfo->next_ino += SHMEM_INO_BATCH;
			raw_spin_unlock(&sbinfo->stat_lock);
			if (unlikely(is_zero_ino(ino)))
				ino++;
		}
		*inop = ino;
		*next_ino = ++ino;
		put_cpu();
	}

	return 0;
}

static void shmem_free_inode(struct super_block *sb)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
	if (sbinfo->max_inodes) {
		raw_spin_lock(&sbinfo->stat_lock);
		sbinfo->free_inodes++;
		raw_spin_unlock(&sbinfo->stat_lock);
	}
}

/**
 * shmem_recalc_inode - recalculate the block usage of an inode
 * @inode: inode to recalc
 *
 * We have to calculate the free blocks since the mm can drop
 * undirtied hole pages behind our back.
 *
 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 *
 * It has to be called with the spinlock held.
 */
static void shmem_recalc_inode(struct inode *inode)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	long freed;

	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
	if (freed > 0) {
		info->alloced -= freed;
		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
		shmem_inode_unacct_blocks(inode, freed);
	}
}

bool shmem_charge(struct inode *inode, long pages)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	unsigned long flags;

	if (!shmem_inode_acct_block(inode, pages))
		return false;

	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
	inode->i_mapping->nrpages += pages;

	spin_lock_irqsave(&info->lock, flags);
	info->alloced += pages;
	inode->i_blocks += pages * BLOCKS_PER_PAGE;
	shmem_recalc_inode(inode);
	spin_unlock_irqrestore(&info->lock, flags);

	return true;
}

void shmem_uncharge(struct inode *inode, long pages)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	unsigned long flags;

	/* nrpages adjustment done by __filemap_remove_folio() or caller */

	spin_lock_irqsave(&info->lock, flags);
	info->alloced -= pages;
	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
	shmem_recalc_inode(inode);
	spin_unlock_irqrestore(&info->lock, flags);

	shmem_inode_unacct_blocks(inode, pages);
}

/*
 * Replace item expected in xarray by a new item, while holding xa_lock.
 */
static int shmem_replace_entry(struct address_space *mapping,
			pgoff_t index, void *expected, void *replacement)
{
	XA_STATE(xas, &mapping->i_pages, index);
	void *item;

	VM_BUG_ON(!expected);
	VM_BUG_ON(!replacement);
	item = xas_load(&xas);
	if (item != expected)
		return -ENOENT;
	xas_store(&xas, replacement);
	return 0;
}

/*
 * Sometimes, before we decide whether to proceed or to fail, we must check
 * that an entry was not already brought back from swap by a racing thread.
 *
 * Checking page is not enough: by the time a SwapCache page is locked, it
 * might be reused, and again be SwapCache, using the same swap as before.
 */
static bool shmem_confirm_swap(struct address_space *mapping,
			       pgoff_t index, swp_entry_t swap)
{
	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
}

/*
 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 *
 * SHMEM_HUGE_NEVER:
 *	disables huge pages for the mount;
 * SHMEM_HUGE_ALWAYS:
 *	enables huge pages for the mount;
 * SHMEM_HUGE_WITHIN_SIZE:
 *	only allocate huge pages if the page will be fully within i_size,
 *	also respect fadvise()/madvise() hints;
 * SHMEM_HUGE_ADVISE:
 *	only allocate huge pages if requested with fadvise()/madvise();
 */

#define SHMEM_HUGE_NEVER	0
#define SHMEM_HUGE_ALWAYS	1
#define SHMEM_HUGE_WITHIN_SIZE	2
#define SHMEM_HUGE_ADVISE	3

/*
 * Special values.
 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 *
 * SHMEM_HUGE_DENY:
 *	disables huge on shm_mnt and all mounts, for emergency use;
 * SHMEM_HUGE_FORCE:
 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 *
 */
#define SHMEM_HUGE_DENY		(-1)
#define SHMEM_HUGE_FORCE	(-2)

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* ifdef here to avoid bloating shmem.o when not necessary */

static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;

bool shmem_is_huge(struct vm_area_struct *vma,
		   struct inode *inode, pgoff_t index)
{
	loff_t i_size;

	if (!S_ISREG(inode->i_mode))
		return false;
	if (shmem_huge == SHMEM_HUGE_DENY)
		return false;
	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
		return false;
	if (shmem_huge == SHMEM_HUGE_FORCE)
		return true;

	switch (SHMEM_SB(inode->i_sb)->huge) {
	case SHMEM_HUGE_ALWAYS:
		return true;
	case SHMEM_HUGE_WITHIN_SIZE:
		index = round_up(index + 1, HPAGE_PMD_NR);
		i_size = round_up(i_size_read(inode), PAGE_SIZE);
		if (i_size >> PAGE_SHIFT >= index)
			return true;
		fallthrough;
	case SHMEM_HUGE_ADVISE:
		if (vma && (vma->vm_flags & VM_HUGEPAGE))
			return true;
		fallthrough;
	default:
		return false;
	}
}

#if defined(CONFIG_SYSFS)
static int shmem_parse_huge(const char *str)
{
	if (!strcmp(str, "never"))
		return SHMEM_HUGE_NEVER;
	if (!strcmp(str, "always"))
		return SHMEM_HUGE_ALWAYS;
	if (!strcmp(str, "within_size"))
		return SHMEM_HUGE_WITHIN_SIZE;
	if (!strcmp(str, "advise"))
		return SHMEM_HUGE_ADVISE;
	if (!strcmp(str, "deny"))
		return SHMEM_HUGE_DENY;
	if (!strcmp(str, "force"))
		return SHMEM_HUGE_FORCE;
	return -EINVAL;
}
#endif

#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
static const char *shmem_format_huge(int huge)
{
	switch (huge) {
	case SHMEM_HUGE_NEVER:
		return "never";
	case SHMEM_HUGE_ALWAYS:
		return "always";
	case SHMEM_HUGE_WITHIN_SIZE:
		return "within_size";
	case SHMEM_HUGE_ADVISE:
		return "advise";
	case SHMEM_HUGE_DENY:
		return "deny";
	case SHMEM_HUGE_FORCE:
		return "force";
	default:
		VM_BUG_ON(1);
		return "bad_val";
	}
}
#endif

static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
		struct shrink_control *sc, unsigned long nr_to_split)
{
	LIST_HEAD(list), *pos, *next;
	LIST_HEAD(to_remove);
	struct inode *inode;
	struct shmem_inode_info *info;
	struct folio *folio;
	unsigned long batch = sc ? sc->nr_to_scan : 128;
	int split = 0;

	if (list_empty(&sbinfo->shrinklist))
		return SHRINK_STOP;

	spin_lock(&sbinfo->shrinklist_lock);
	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
		info = list_entry(pos, struct shmem_inode_info, shrinklist);

		/* pin the inode */
		inode = igrab(&info->vfs_inode);

		/* inode is about to be evicted */
		if (!inode) {
			list_del_init(&info->shrinklist);
			goto next;
		}

		/* Check if there's anything to gain */
		if (round_up(inode->i_size, PAGE_SIZE) ==
				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
			list_move(&info->shrinklist, &to_remove);
			goto next;
		}

		list_move(&info->shrinklist, &list);
next:
		sbinfo->shrinklist_len--;
		if (!--batch)
			break;
	}
	spin_unlock(&sbinfo->shrinklist_lock);

	list_for_each_safe(pos, next, &to_remove) {
		info = list_entry(pos, struct shmem_inode_info, shrinklist);
		inode = &info->vfs_inode;
		list_del_init(&info->shrinklist);
		iput(inode);
	}

	list_for_each_safe(pos, next, &list) {
		int ret;
		pgoff_t index;

		info = list_entry(pos, struct shmem_inode_info, shrinklist);
		inode = &info->vfs_inode;

		if (nr_to_split && split >= nr_to_split)
			goto move_back;

		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
		folio = filemap_get_folio(inode->i_mapping, index);
		if (!folio)
			goto drop;

		/* No huge page at the end of the file: nothing to split */
		if (!folio_test_large(folio)) {
			folio_put(folio);
			goto drop;
		}

		/*
		 * Move the inode on the list back to shrinklist if we failed
		 * to lock the page at this time.
		 *
		 * Waiting for the lock may lead to deadlock in the
		 * reclaim path.
		 */
		if (!folio_trylock(folio)) {
			folio_put(folio);
			goto move_back;
		}

		ret = split_huge_page(&folio->page);
		folio_unlock(folio);
		folio_put(folio);

		/* If split failed move the inode on the list back to shrinklist */
		if (ret)
			goto move_back;

		split++;
drop:
		list_del_init(&info->shrinklist);
		goto put;
move_back:
		/*
		 * Make sure the inode is either on the global list or deleted
		 * from any local list before iput() since it could be deleted
		 * in another thread once we put the inode (then the local list
		 * is corrupted).
		 */
		spin_lock(&sbinfo->shrinklist_lock);
		list_move(&info->shrinklist, &sbinfo->shrinklist);
		sbinfo->shrinklist_len++;
		spin_unlock(&sbinfo->shrinklist_lock);
put:
		iput(inode);
	}

	return split;
}

static long shmem_unused_huge_scan(struct super_block *sb,
		struct shrink_control *sc)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);

	if (!READ_ONCE(sbinfo->shrinklist_len))
		return SHRINK_STOP;

	return shmem_unused_huge_shrink(sbinfo, sc, 0);
}

static long shmem_unused_huge_count(struct super_block *sb,
		struct shrink_control *sc)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
	return READ_ONCE(sbinfo->shrinklist_len);
}
#else /* !CONFIG_TRANSPARENT_HUGEPAGE */

#define shmem_huge SHMEM_HUGE_DENY

bool shmem_is_huge(struct vm_area_struct *vma,
		   struct inode *inode, pgoff_t index)
{
	return false;
}

static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
		struct shrink_control *sc, unsigned long nr_to_split)
{
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

/*
 * Like filemap_add_folio, but error if expected item has gone.
 */
static int shmem_add_to_page_cache(struct folio *folio,
				   struct address_space *mapping,
				   pgoff_t index, void *expected, gfp_t gfp,
				   struct mm_struct *charge_mm)
{
	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
	long nr = folio_nr_pages(folio);
	int error;

	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
	VM_BUG_ON(expected && folio_test_large(folio));

	folio_ref_add(folio, nr);
	folio->mapping = mapping;
	folio->index = index;

	if (!folio_test_swapcache(folio)) {
		error = mem_cgroup_charge(folio, charge_mm, gfp);
		if (error) {
			if (folio_test_pmd_mappable(folio)) {
				count_vm_event(THP_FILE_FALLBACK);
				count_vm_event(THP_FILE_FALLBACK_CHARGE);
			}
			goto error;
		}
	}
	folio_throttle_swaprate(folio, gfp);

	do {
		xas_lock_irq(&xas);
		if (expected != xas_find_conflict(&xas)) {
			xas_set_err(&xas, -EEXIST);
			goto unlock;
		}
		if (expected && xas_find_conflict(&xas)) {
			xas_set_err(&xas, -EEXIST);
			goto unlock;
		}
		xas_store(&xas, folio);
		if (xas_error(&xas))
			goto unlock;
		if (folio_test_pmd_mappable(folio)) {
			count_vm_event(THP_FILE_ALLOC);
			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
		}
		mapping->nrpages += nr;
		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp));

	if (xas_error(&xas)) {
		error = xas_error(&xas);
		goto error;
	}

	return 0;
error:
	folio->mapping = NULL;
	folio_ref_sub(folio, nr);
	return error;
}

/*
 * Like delete_from_page_cache, but substitutes swap for page.
 */
static void shmem_delete_from_page_cache(struct page *page, void *radswap)
{
	struct address_space *mapping = page->mapping;
	int error;

	VM_BUG_ON_PAGE(PageCompound(page), page);

	xa_lock_irq(&mapping->i_pages);
	error = shmem_replace_entry(mapping, page->index, page, radswap);
	page->mapping = NULL;
	mapping->nrpages--;
	__dec_lruvec_page_state(page, NR_FILE_PAGES);
	__dec_lruvec_page_state(page, NR_SHMEM);
	xa_unlock_irq(&mapping->i_pages);
	put_page(page);
	BUG_ON(error);
}

/*
 * Remove swap entry from page cache, free the swap and its page cache.
 */
static int shmem_free_swap(struct address_space *mapping,
			   pgoff_t index, void *radswap)
{
	void *old;

	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
	if (old != radswap)
		return -ENOENT;
	free_swap_and_cache(radix_to_swp_entry(radswap));
	return 0;
}

/*
 * Determine (in bytes) how many of the shmem object's pages mapped by the
 * given offsets are swapped out.
 *
 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 * as long as the inode doesn't go away and racy results are not a problem.
 */
unsigned long shmem_partial_swap_usage(struct address_space *mapping,
						pgoff_t start, pgoff_t end)
{
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
	unsigned long swapped = 0;

	rcu_read_lock();
	xas_for_each(&xas, page, end - 1) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
			swapped++;

		if (need_resched()) {
			xas_pause(&xas);
			cond_resched_rcu();
		}
	}

	rcu_read_unlock();

	return swapped << PAGE_SHIFT;
}

/*
 * Determine (in bytes) how many of the shmem object's pages mapped by the
 * given vma is swapped out.
 *
 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 * as long as the inode doesn't go away and racy results are not a problem.
 */
unsigned long shmem_swap_usage(struct vm_area_struct *vma)
{
	struct inode *inode = file_inode(vma->vm_file);
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct address_space *mapping = inode->i_mapping;
	unsigned long swapped;

	/* Be careful as we don't hold info->lock */
	swapped = READ_ONCE(info->swapped);

	/*
	 * The easier cases are when the shmem object has nothing in swap, or
	 * the vma maps it whole. Then we can simply use the stats that we
	 * already track.
	 */
	if (!swapped)
		return 0;

	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
		return swapped << PAGE_SHIFT;

	/* Here comes the more involved part */
	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
					vma->vm_pgoff + vma_pages(vma));
}

/*
 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 */
void shmem_unlock_mapping(struct address_space *mapping)
{
	struct folio_batch fbatch;
	pgoff_t index = 0;

	folio_batch_init(&fbatch);
	/*
	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
	 */
	while (!mapping_unevictable(mapping) &&
	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
		check_move_unevictable_folios(&fbatch);
		folio_batch_release(&fbatch);
		cond_resched();
	}
}

static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
{
	struct folio *folio;
	struct page *page;

	/*
	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
	 * beyond i_size, and reports fallocated pages as holes.
	 */
	folio = __filemap_get_folio(inode->i_mapping, index,
					FGP_ENTRY | FGP_LOCK, 0);
	if (!xa_is_value(folio))
		return folio;
	/*
	 * But read a page back from swap if any of it is within i_size
	 * (although in some cases this is just a waste of time).
	 */
	page = NULL;
	shmem_getpage(inode, index, &page, SGP_READ);
	return page ? page_folio(page) : NULL;
}

/*
 * Remove range of pages and swap entries from page cache, and free them.
 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 */
static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
								 bool unfalloc)
{
	struct address_space *mapping = inode->i_mapping;
	struct shmem_inode_info *info = SHMEM_I(inode);
	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
	struct folio_batch fbatch;
	pgoff_t indices[PAGEVEC_SIZE];
	struct folio *folio;
	bool same_folio;
	long nr_swaps_freed = 0;
	pgoff_t index;
	int i;

	if (lend == -1)
		end = -1;	/* unsigned, so actually very big */

	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
		info->fallocend = start;

	folio_batch_init(&fbatch);
	index = start;
	while (index < end && find_lock_entries(mapping, index, end - 1,
			&fbatch, indices)) {
		for (i = 0; i < folio_batch_count(&fbatch); i++) {
			folio = fbatch.folios[i];

			index = indices[i];

			if (xa_is_value(folio)) {
				if (unfalloc)
					continue;
				nr_swaps_freed += !shmem_free_swap(mapping,
								index, folio);
				continue;
			}
			index += folio_nr_pages(folio) - 1;

			if (!unfalloc || !folio_test_uptodate(folio))
				truncate_inode_folio(mapping, folio);
			folio_unlock(folio);
		}
		folio_batch_remove_exceptionals(&fbatch);
		folio_batch_release(&fbatch);
		cond_resched();
		index++;
	}

	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
	if (folio) {
		same_folio = lend < folio_pos(folio) + folio_size(folio);
		folio_mark_dirty(folio);
		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
			start = folio->index + folio_nr_pages(folio);
			if (same_folio)
				end = folio->index;
		}
		folio_unlock(folio);
		folio_put(folio);
		folio = NULL;
	}

	if (!same_folio)
		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
	if (folio) {
		folio_mark_dirty(folio);
		if (!truncate_inode_partial_folio(folio, lstart, lend))
			end = folio->index;
		folio_unlock(folio);
		folio_put(folio);
	}

	index = start;
	while (index < end) {
		cond_resched();

		if (!find_get_entries(mapping, index, end - 1, &fbatch,
				indices)) {
			/* If all gone or hole-punch or unfalloc, we're done */
			if (index == start || end != -1)
				break;
			/* But if truncating, restart to make sure all gone */
			index = start;
			continue;
		}
		for (i = 0; i < folio_batch_count(&fbatch); i++) {
			folio = fbatch.folios[i];

			index = indices[i];
			if (xa_is_value(folio)) {
				if (unfalloc)
					continue;
				if (shmem_free_swap(mapping, index, folio)) {
					/* Swap was replaced by page: retry */
					index--;
					break;
				}
				nr_swaps_freed++;
				continue;
			}

			folio_lock(folio);

			if (!unfalloc || !folio_test_uptodate(folio)) {
				if (folio_mapping(folio) != mapping) {
					/* Page was replaced by swap: retry */
					folio_unlock(folio);
					index--;
					break;
				}
				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
						folio);
				truncate_inode_folio(mapping, folio);
			}
			index = folio->index + folio_nr_pages(folio) - 1;
			folio_unlock(folio);
		}
		folio_batch_remove_exceptionals(&fbatch);
		folio_batch_release(&fbatch);
		index++;
	}

	spin_lock_irq(&info->lock);
	info->swapped -= nr_swaps_freed;
	shmem_recalc_inode(inode);
	spin_unlock_irq(&info->lock);
}

void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
	shmem_undo_range(inode, lstart, lend, false);
	inode->i_ctime = inode->i_mtime = current_time(inode);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);

static int shmem_getattr(struct user_namespace *mnt_userns,
			 const struct path *path, struct kstat *stat,
			 u32 request_mask, unsigned int query_flags)
{
	struct inode *inode = path->dentry->d_inode;
	struct shmem_inode_info *info = SHMEM_I(inode);

	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
		spin_lock_irq(&info->lock);
		shmem_recalc_inode(inode);
		spin_unlock_irq(&info->lock);
	}
	if (info->fsflags & FS_APPEND_FL)
		stat->attributes |= STATX_ATTR_APPEND;
	if (info->fsflags & FS_IMMUTABLE_FL)
		stat->attributes |= STATX_ATTR_IMMUTABLE;
	if (info->fsflags & FS_NODUMP_FL)
		stat->attributes |= STATX_ATTR_NODUMP;
	stat->attributes_mask |= (STATX_ATTR_APPEND |
			STATX_ATTR_IMMUTABLE |
			STATX_ATTR_NODUMP);
	generic_fillattr(&init_user_ns, inode, stat);

	if (shmem_is_huge(NULL, inode, 0))
		stat->blksize = HPAGE_PMD_SIZE;

	if (request_mask & STATX_BTIME) {
		stat->result_mask |= STATX_BTIME;
		stat->btime.tv_sec = info->i_crtime.tv_sec;
		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
	}

	return 0;
}

static int shmem_setattr(struct user_namespace *mnt_userns,
			 struct dentry *dentry, struct iattr *attr)
{
	struct inode *inode = d_inode(dentry);
	struct shmem_inode_info *info = SHMEM_I(inode);
	int error;

	error = setattr_prepare(&init_user_ns, dentry, attr);
	if (error)
		return error;

	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
		loff_t oldsize = inode->i_size;
		loff_t newsize = attr->ia_size;

		/* protected by i_rwsem */
		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
			return -EPERM;

		if (newsize != oldsize) {
			error = shmem_reacct_size(SHMEM_I(inode)->flags,
					oldsize, newsize);
			if (error)
				return error;
			i_size_write(inode, newsize);
			inode->i_ctime = inode->i_mtime = current_time(inode);
		}
		if (newsize <= oldsize) {
			loff_t holebegin = round_up(newsize, PAGE_SIZE);
			if (oldsize > holebegin)
				unmap_mapping_range(inode->i_mapping,
							holebegin, 0, 1);
			if (info->alloced)
				shmem_truncate_range(inode,
							newsize, (loff_t)-1);
			/* unmap again to remove racily COWed private pages */
			if (oldsize > holebegin)
				unmap_mapping_range(inode->i_mapping,
							holebegin, 0, 1);
		}
	}

	setattr_copy(&init_user_ns, inode, attr);
	if (attr->ia_valid & ATTR_MODE)
		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
	return error;
}

static void shmem_evict_inode(struct inode *inode)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);

	if (shmem_mapping(inode->i_mapping)) {
		shmem_unacct_size(info->flags, inode->i_size);
		inode->i_size = 0;
		mapping_set_exiting(inode->i_mapping);
		shmem_truncate_range(inode, 0, (loff_t)-1);
		if (!list_empty(&info->shrinklist)) {
			spin_lock(&sbinfo->shrinklist_lock);
			if (!list_empty(&info->shrinklist)) {
				list_del_init(&info->shrinklist);
				sbinfo->shrinklist_len--;
			}
			spin_unlock(&sbinfo->shrinklist_lock);
		}
		while (!list_empty(&info->swaplist)) {
			/* Wait while shmem_unuse() is scanning this inode... */
			wait_var_event(&info->stop_eviction,
				       !atomic_read(&info->stop_eviction));
			mutex_lock(&shmem_swaplist_mutex);
			/* ...but beware of the race if we peeked too early */
			if (!atomic_read(&info->stop_eviction))
				list_del_init(&info->swaplist);
			mutex_unlock(&shmem_swaplist_mutex);
		}
	}

	simple_xattrs_free(&info->xattrs);
	WARN_ON(inode->i_blocks);
	shmem_free_inode(inode->i_sb);
	clear_inode(inode);
}

static int shmem_find_swap_entries(struct address_space *mapping,
				   pgoff_t start, struct folio_batch *fbatch,
				   pgoff_t *indices, unsigned int type)
{
	XA_STATE(xas, &mapping->i_pages, start);
	struct folio *folio;
	swp_entry_t entry;

	rcu_read_lock();
	xas_for_each(&xas, folio, ULONG_MAX) {
		if (xas_retry(&xas, folio))
			continue;

		if (!xa_is_value(folio))
			continue;

		entry = radix_to_swp_entry(folio);
		/*
		 * swapin error entries can be found in the mapping. But they're
		 * deliberately ignored here as we've done everything we can do.
		 */
		if (swp_type(entry) != type)
			continue;

		indices[folio_batch_count(fbatch)] = xas.xa_index;
		if (!folio_batch_add(fbatch, folio))
			break;

		if (need_resched()) {
			xas_pause(&xas);
			cond_resched_rcu();
		}
	}
	rcu_read_unlock();

	return xas.xa_index;
}

/*
 * Move the swapped pages for an inode to page cache. Returns the count
 * of pages swapped in, or the error in case of failure.
 */
static int shmem_unuse_swap_entries(struct inode *inode,
		struct folio_batch *fbatch, pgoff_t *indices)
{
	int i = 0;
	int ret = 0;
	int error = 0;
	struct address_space *mapping = inode->i_mapping;

	for (i = 0; i < folio_batch_count(fbatch); i++) {
		struct folio *folio = fbatch->folios[i];

		if (!xa_is_value(folio))
			continue;
		error = shmem_swapin_folio(inode, indices[i],
					  &folio, SGP_CACHE,
					  mapping_gfp_mask(mapping),
					  NULL, NULL);
		if (error == 0) {
			folio_unlock(folio);
			folio_put(folio);
			ret++;
		}
		if (error == -ENOMEM)
			break;
		error = 0;
	}
	return error ? error : ret;
}

/*
 * If swap found in inode, free it and move page from swapcache to filecache.
 */
static int shmem_unuse_inode(struct inode *inode, unsigned int type)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t start = 0;
	struct folio_batch fbatch;
	pgoff_t indices[PAGEVEC_SIZE];
	int ret = 0;

	do {
		folio_batch_init(&fbatch);
		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
		if (folio_batch_count(&fbatch) == 0) {
			ret = 0;
			break;
		}

		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
		if (ret < 0)
			break;

		start = indices[folio_batch_count(&fbatch) - 1];
	} while (true);

	return ret;
}

/*
 * Read all the shared memory data that resides in the swap
 * device 'type' back into memory, so the swap device can be
 * unused.
 */
int shmem_unuse(unsigned int type)
{
	struct shmem_inode_info *info, *next;
	int error = 0;

	if (list_empty(&shmem_swaplist))
		return 0;

	mutex_lock(&shmem_swaplist_mutex);
	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
		if (!info->swapped) {
			list_del_init(&info->swaplist);
			continue;
		}
		/*
		 * Drop the swaplist mutex while searching the inode for swap;
		 * but before doing so, make sure shmem_evict_inode() will not
		 * remove placeholder inode from swaplist, nor let it be freed
		 * (igrab() would protect from unlink, but not from unmount).
		 */
		atomic_inc(&info->stop_eviction);
		mutex_unlock(&shmem_swaplist_mutex);

		error = shmem_unuse_inode(&info->vfs_inode, type);
		cond_resched();

		mutex_lock(&shmem_swaplist_mutex);
		next = list_next_entry(info, swaplist);
		if (!info->swapped)
			list_del_init(&info->swaplist);
		if (atomic_dec_and_test(&info->stop_eviction))
			wake_up_var(&info->stop_eviction);
		if (error)
			break;
	}
	mutex_unlock(&shmem_swaplist_mutex);

	return error;
}

/*
 * Move the page from the page cache to the swap cache.
 */
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
{
	struct folio *folio = page_folio(page);
	struct shmem_inode_info *info;
	struct address_space *mapping;
	struct inode *inode;
	swp_entry_t swap;
	pgoff_t index;

	/*
	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
	 * and its shmem_writeback() needs them to be split when swapping.
	 */
	if (PageTransCompound(page)) {
		/* Ensure the subpages are still dirty */
		SetPageDirty(page);
		if (split_huge_page(page) < 0)
			goto redirty;
		ClearPageDirty(page);
	}

	BUG_ON(!PageLocked(page));
	mapping = page->mapping;
	index = page->index;
	inode = mapping->host;
	info = SHMEM_I(inode);
	if (info->flags & VM_LOCKED)
		goto redirty;
	if (!total_swap_pages)
		goto redirty;

	/*
	 * Our capabilities prevent regular writeback or sync from ever calling
	 * shmem_writepage; but a stacking filesystem might use ->writepage of
	 * its underlying filesystem, in which case tmpfs should write out to
	 * swap only in response to memory pressure, and not for the writeback
	 * threads or sync.
	 */
	if (!wbc->for_reclaim) {
		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
		goto redirty;
	}

	/*
	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
	 * value into swapfile.c, the only way we can correctly account for a
	 * fallocated page arriving here is now to initialize it and write it.
	 *
	 * That's okay for a page already fallocated earlier, but if we have
	 * not yet completed the fallocation, then (a) we want to keep track
	 * of this page in case we have to undo it, and (b) it may not be a
	 * good idea to continue anyway, once we're pushing into swap.  So
	 * reactivate the page, and let shmem_fallocate() quit when too many.
	 */
	if (!PageUptodate(page)) {
		if (inode->i_private) {
			struct shmem_falloc *shmem_falloc;
			spin_lock(&inode->i_lock);
			shmem_falloc = inode->i_private;
			if (shmem_falloc &&
			    !shmem_falloc->waitq &&
			    index >= shmem_falloc->start &&
			    index < shmem_falloc->next)
				shmem_falloc->nr_unswapped++;
			else
				shmem_falloc = NULL;
			spin_unlock(&inode->i_lock);
			if (shmem_falloc)
				goto redirty;
		}
		clear_highpage(page);
		flush_dcache_page(page);
		SetPageUptodate(page);
	}

	swap = folio_alloc_swap(folio);
	if (!swap.val)
		goto redirty;

	/*
	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
	 * if it's not already there.  Do it now before the page is
	 * moved to swap cache, when its pagelock no longer protects
	 * the inode from eviction.  But don't unlock the mutex until
	 * we've incremented swapped, because shmem_unuse_inode() will
	 * prune a !swapped inode from the swaplist under this mutex.
	 */
	mutex_lock(&shmem_swaplist_mutex);
	if (list_empty(&info->swaplist))
		list_add(&info->swaplist, &shmem_swaplist);

	if (add_to_swap_cache(page, swap,
			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
			NULL) == 0) {
		spin_lock_irq(&info->lock);
		shmem_recalc_inode(inode);
		info->swapped++;
		spin_unlock_irq(&info->lock);

		swap_shmem_alloc(swap);
		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));

		mutex_unlock(&shmem_swaplist_mutex);
		BUG_ON(page_mapped(page));
		swap_writepage(page, wbc);
		return 0;
	}

	mutex_unlock(&shmem_swaplist_mutex);
	put_swap_page(page, swap);
redirty:
	set_page_dirty(page);
	if (wbc->for_reclaim)
		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
	unlock_page(page);
	return 0;
}

#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
	char buffer[64];

	if (!mpol || mpol->mode == MPOL_DEFAULT)
		return;		/* show nothing */

	mpol_to_str(buffer, sizeof(buffer), mpol);

	seq_printf(seq, ",mpol=%s", buffer);
}

static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
	struct mempolicy *mpol = NULL;
	if (sbinfo->mpol) {
		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
		mpol = sbinfo->mpol;
		mpol_get(mpol);
		raw_spin_unlock(&sbinfo->stat_lock);
	}
	return mpol;
}
#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
}
static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
	return NULL;
}
#endif /* CONFIG_NUMA && CONFIG_TMPFS */
#ifndef CONFIG_NUMA
#define vm_policy vm_private_data
#endif

static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
		struct shmem_inode_info *info, pgoff_t index)
{
	/* Create a pseudo vma that just contains the policy */
	vma_init(vma, NULL);
	/* Bias interleave by inode number to distribute better across nodes */
	vma->vm_pgoff = index + info->vfs_inode.i_ino;
	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
}

static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
{
	/* Drop reference taken by mpol_shared_policy_lookup() */
	mpol_cond_put(vma->vm_policy);
}

static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
			struct shmem_inode_info *info, pgoff_t index)
{
	struct vm_area_struct pvma;
	struct page *page;
	struct vm_fault vmf = {
		.vma = &pvma,
	};

	shmem_pseudo_vma_init(&pvma, info, index);
	page = swap_cluster_readahead(swap, gfp, &vmf);
	shmem_pseudo_vma_destroy(&pvma);

	return page;
}

/*
 * Make sure huge_gfp is always more limited than limit_gfp.
 * Some of the flags set permissions, while others set limitations.
 */
static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
{
	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);

	/* Allow allocations only from the originally specified zones. */
	result |= zoneflags;

	/*
	 * Minimize the result gfp by taking the union with the deny flags,
	 * and the intersection of the allow flags.
	 */
	result |= (limit_gfp & denyflags);
	result |= (huge_gfp & limit_gfp) & allowflags;

	return result;
}

static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
		struct shmem_inode_info *info, pgoff_t index)
{
	struct vm_area_struct pvma;
	struct address_space *mapping = info->vfs_inode.i_mapping;
	pgoff_t hindex;
	struct folio *folio;

	hindex = round_down(index, HPAGE_PMD_NR);
	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
								XA_PRESENT))
		return NULL;

	shmem_pseudo_vma_init(&pvma, info, hindex);
	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
	shmem_pseudo_vma_destroy(&pvma);
	if (!folio)
		count_vm_event(THP_FILE_FALLBACK);
	return folio;
}

static struct folio *shmem_alloc_folio(gfp_t gfp,
			struct shmem_inode_info *info, pgoff_t index)
{
	struct vm_area_struct pvma;
	struct folio *folio;

	shmem_pseudo_vma_init(&pvma, info, index);
	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
	shmem_pseudo_vma_destroy(&pvma);

	return folio;
}

static struct page *shmem_alloc_page(gfp_t gfp,
			struct shmem_inode_info *info, pgoff_t index)
{
	return &shmem_alloc_folio(gfp, info, index)->page;
}

static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
		pgoff_t index, bool huge)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct folio *folio;
	int nr;
	int err = -ENOSPC;

	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
		huge = false;
	nr = huge ? HPAGE_PMD_NR : 1;

	if (!shmem_inode_acct_block(inode, nr))
		goto failed;

	if (huge)
		folio = shmem_alloc_hugefolio(gfp, info, index);
	else
		folio = shmem_alloc_folio(gfp, info, index);
	if (folio) {
		__folio_set_locked(folio);
		__folio_set_swapbacked(folio);
		return folio;
	}

	err = -ENOMEM;
	shmem_inode_unacct_blocks(inode, nr);
failed:
	return ERR_PTR(err);
}

/*
 * When a page is moved from swapcache to shmem filecache (either by the
 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
 * shmem_unuse_inode()), it may have been read in earlier from swap, in
 * ignorance of the mapping it belongs to.  If that mapping has special
 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
 * we may need to copy to a suitable page before moving to filecache.
 *
 * In a future release, this may well be extended to respect cpuset and
 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
 * but for now it is a simple matter of zone.
 */
static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
{
	return folio_zonenum(folio) > gfp_zone(gfp);
}

static int shmem_replace_page(struct page **pagep, gfp_t gfp,
				struct shmem_inode_info *info, pgoff_t index)
{
	struct page *oldpage, *newpage;
	struct folio *old, *new;
	struct address_space *swap_mapping;
	swp_entry_t entry;
	pgoff_t swap_index;
	int error;

	oldpage = *pagep;
	entry.val = page_private(oldpage);
	swap_index = swp_offset(entry);
	swap_mapping = page_mapping(oldpage);

	/*
	 * We have arrived here because our zones are constrained, so don't
	 * limit chance of success by further cpuset and node constraints.
	 */
	gfp &= ~GFP_CONSTRAINT_MASK;
	newpage = shmem_alloc_page(gfp, info, index);
	if (!newpage)
		return -ENOMEM;

	get_page(newpage);
	copy_highpage(newpage, oldpage);
	flush_dcache_page(newpage);

	__SetPageLocked(newpage);
	__SetPageSwapBacked(newpage);
	SetPageUptodate(newpage);
	set_page_private(newpage, entry.val);
	SetPageSwapCache(newpage);

	/*
	 * Our caller will very soon move newpage out of swapcache, but it's
	 * a nice clean interface for us to replace oldpage by newpage there.
	 */
	xa_lock_irq(&swap_mapping->i_pages);
	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
	if (!error) {
		old = page_folio(oldpage);
		new = page_folio(newpage);
		mem_cgroup_migrate(old, new);
		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
	}
	xa_unlock_irq(&swap_mapping->i_pages);

	if (unlikely(error)) {
		/*
		 * Is this possible?  I think not, now that our callers check
		 * both PageSwapCache and page_private after getting page lock;
		 * but be defensive.  Reverse old to newpage for clear and free.
		 */
		oldpage = newpage;
	} else {
		lru_cache_add(newpage);
		*pagep = newpage;
	}

	ClearPageSwapCache(oldpage);
	set_page_private(oldpage, 0);

	unlock_page(oldpage);
	put_page(oldpage);
	put_page(oldpage);
	return error;
}

static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
					 struct folio *folio, swp_entry_t swap)
{
	struct address_space *mapping = inode->i_mapping;
	struct shmem_inode_info *info = SHMEM_I(inode);
	swp_entry_t swapin_error;
	void *old;

	swapin_error = make_swapin_error_entry(&folio->page);
	old = xa_cmpxchg_irq(&mapping->i_pages, index,
			     swp_to_radix_entry(swap),
			     swp_to_radix_entry(swapin_error), 0);
	if (old != swp_to_radix_entry(swap))
		return;

	folio_wait_writeback(folio);
	delete_from_swap_cache(folio);
	spin_lock_irq(&info->lock);
	/*
	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
	 * shmem_evict_inode.
	 */
	info->alloced--;
	info->swapped--;
	shmem_recalc_inode(inode);
	spin_unlock_irq(&info->lock);
	swap_free(swap);
}

/*
 * Swap in the folio pointed to by *foliop.
 * Caller has to make sure that *foliop contains a valid swapped folio.
 * Returns 0 and the folio in foliop if success. On failure, returns the
 * error code and NULL in *foliop.
 */
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
			     struct folio **foliop, enum sgp_type sgp,
			     gfp_t gfp, struct vm_area_struct *vma,
			     vm_fault_t *fault_type)
{
	struct address_space *mapping = inode->i_mapping;
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
	struct page *page;
	struct folio *folio = NULL;
	swp_entry_t swap;
	int error;

	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
	swap = radix_to_swp_entry(*foliop);
	*foliop = NULL;

	if (is_swapin_error_entry(swap))
		return -EIO;

	/* Look it up and read it in.. */
	page = lookup_swap_cache(swap, NULL, 0);
	if (!page) {
		/* Or update major stats only when swapin succeeds?? */
		if (fault_type) {
			*fault_type |= VM_FAULT_MAJOR;
			count_vm_event(PGMAJFAULT);
			count_memcg_event_mm(charge_mm, PGMAJFAULT);
		}
		/* Here we actually start the io */
		page = shmem_swapin(swap, gfp, info, index);
		if (!page) {
			error = -ENOMEM;
			goto failed;
		}
	}
	folio = page_folio(page);

	/* We have to do this with folio locked to prevent races */
	folio_lock(folio);
	if (!folio_test_swapcache(folio) ||
	    folio_swap_entry(folio).val != swap.val ||
	    !shmem_confirm_swap(mapping, index, swap)) {
		error = -EEXIST;
		goto unlock;
	}
	if (!folio_test_uptodate(folio)) {
		error = -EIO;
		goto failed;
	}
	folio_wait_writeback(folio);

	/*
	 * Some architectures may have to restore extra metadata to the
	 * folio after reading from swap.
	 */
	arch_swap_restore(swap, folio);

	if (shmem_should_replace_folio(folio, gfp)) {
		error = shmem_replace_page(&page, gfp, info, index);
		if (error)
			goto failed;
	}

	error = shmem_add_to_page_cache(folio, mapping, index,
					swp_to_radix_entry(swap), gfp,
					charge_mm);
	if (error)
		goto failed;

	spin_lock_irq(&info->lock);
	info->swapped--;
	shmem_recalc_inode(inode);
	spin_unlock_irq(&info->lock);

	if (sgp == SGP_WRITE)
		folio_mark_accessed(folio);

	delete_from_swap_cache(folio);
	folio_mark_dirty(folio);
	swap_free(swap);

	*foliop = folio;
	return 0;
failed:
	if (!shmem_confirm_swap(mapping, index, swap))
		error = -EEXIST;
	if (error == -EIO)
		shmem_set_folio_swapin_error(inode, index, folio, swap);
unlock:
	if (folio) {
		folio_unlock(folio);
		folio_put(folio);
	}

	return error;
}

/*
 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 *
 * If we allocate a new one we do not mark it dirty. That's up to the
 * vm. If we swap it in we mark it dirty since we also free the swap
 * entry since a page cannot live in both the swap and page cache.
 *
 * vma, vmf, and fault_type are only supplied by shmem_fault:
 * otherwise they are NULL.
 */
static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
	struct vm_area_struct *vma, struct vm_fault *vmf,
			vm_fault_t *fault_type)
{
	struct address_space *mapping = inode->i_mapping;
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct shmem_sb_info *sbinfo;
	struct mm_struct *charge_mm;
	struct folio *folio;
	pgoff_t hindex = index;
	gfp_t huge_gfp;
	int error;
	int once = 0;
	int alloced = 0;

	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
		return -EFBIG;
repeat:
	if (sgp <= SGP_CACHE &&
	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
		return -EINVAL;
	}

	sbinfo = SHMEM_SB(inode->i_sb);
	charge_mm = vma ? vma->vm_mm : NULL;

	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
	if (folio && vma && userfaultfd_minor(vma)) {
		if (!xa_is_value(folio)) {
			folio_unlock(folio);
			folio_put(folio);
		}
		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
		return 0;
	}

	if (xa_is_value(folio)) {
		error = shmem_swapin_folio(inode, index, &folio,
					  sgp, gfp, vma, fault_type);
		if (error == -EEXIST)
			goto repeat;

		*pagep = &folio->page;
		return error;
	}

	if (folio) {
		hindex = folio->index;
		if (sgp == SGP_WRITE)
			folio_mark_accessed(folio);
		if (folio_test_uptodate(folio))
			goto out;
		/* fallocated page */
		if (sgp != SGP_READ)
			goto clear;
		folio_unlock(folio);
		folio_put(folio);
	}

	/*
	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
	 */
	*pagep = NULL;
	if (sgp == SGP_READ)
		return 0;
	if (sgp == SGP_NOALLOC)
		return -ENOENT;

	/*
	 * Fast cache lookup and swap lookup did not find it: allocate.
	 */

	if (vma && userfaultfd_missing(vma)) {
		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
		return 0;
	}

	if (!shmem_is_huge(vma, inode, index))
		goto alloc_nohuge;

	huge_gfp = vma_thp_gfp_mask(vma);
	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
	if (IS_ERR(folio)) {
alloc_nohuge:
		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
	}
	if (IS_ERR(folio)) {
		int retry = 5;

		error = PTR_ERR(folio);
		folio = NULL;
		if (error != -ENOSPC)
			goto unlock;
		/*
		 * Try to reclaim some space by splitting a huge page
		 * beyond i_size on the filesystem.
		 */
		while (retry--) {
			int ret;

			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
			if (ret == SHRINK_STOP)
				break;
			if (ret)
				goto alloc_nohuge;
		}
		goto unlock;
	}

	hindex = round_down(index, folio_nr_pages(folio));

	if (sgp == SGP_WRITE)
		__folio_set_referenced(folio);

	error = shmem_add_to_page_cache(folio, mapping, hindex,
					NULL, gfp & GFP_RECLAIM_MASK,
					charge_mm);
	if (error)
		goto unacct;
	folio_add_lru(folio);

	spin_lock_irq(&info->lock);
	info->alloced += folio_nr_pages(folio);
	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
	shmem_recalc_inode(inode);
	spin_unlock_irq(&info->lock);
	alloced = true;

	if (folio_test_pmd_mappable(folio) &&
	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
			hindex + HPAGE_PMD_NR - 1) {
		/*
		 * Part of the huge page is beyond i_size: subject
		 * to shrink under memory pressure.
		 */
		spin_lock(&sbinfo->shrinklist_lock);
		/*
		 * _careful to defend against unlocked access to
		 * ->shrink_list in shmem_unused_huge_shrink()
		 */
		if (list_empty_careful(&info->shrinklist)) {
			list_add_tail(&info->shrinklist,
				      &sbinfo->shrinklist);
			sbinfo->shrinklist_len++;
		}
		spin_unlock(&sbinfo->shrinklist_lock);
	}

	/*
	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
	 */
	if (sgp == SGP_FALLOC)
		sgp = SGP_WRITE;
clear:
	/*
	 * Let SGP_WRITE caller clear ends if write does not fill page;
	 * but SGP_FALLOC on a page fallocated earlier must initialize
	 * it now, lest undo on failure cancel our earlier guarantee.
	 */
	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
		long i, n = folio_nr_pages(folio);

		for (i = 0; i < n; i++)
			clear_highpage(folio_page(folio, i));
		flush_dcache_folio(folio);
		folio_mark_uptodate(folio);
	}

	/* Perhaps the file has been truncated since we checked */
	if (sgp <= SGP_CACHE &&
	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
		if (alloced) {
			folio_clear_dirty(folio);
			filemap_remove_folio(folio);
			spin_lock_irq(&info->lock);
			shmem_recalc_inode(inode);
			spin_unlock_irq(&info->lock);
		}
		error = -EINVAL;
		goto unlock;
	}
out:
	*pagep = folio_page(folio, index - hindex);
	return 0;

	/*
	 * Error recovery.
	 */
unacct:
	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));

	if (folio_test_large(folio)) {
		folio_unlock(folio);
		folio_put(folio);
		goto alloc_nohuge;
	}
unlock:
	if (folio) {
		folio_unlock(folio);
		folio_put(folio);
	}
	if (error == -ENOSPC && !once++) {
		spin_lock_irq(&info->lock);
		shmem_recalc_inode(inode);
		spin_unlock_irq(&info->lock);
		goto repeat;
	}
	if (error == -EEXIST)
		goto repeat;
	return error;
}

/*
 * This is like autoremove_wake_function, but it removes the wait queue
 * entry unconditionally - even if something else had already woken the
 * target.
 */
static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
	int ret = default_wake_function(wait, mode, sync, key);
	list_del_init(&wait->entry);
	return ret;
}

static vm_fault_t shmem_fault(struct vm_fault *vmf)
{
	struct vm_area_struct *vma = vmf->vma;
	struct inode *inode = file_inode(vma->vm_file);
	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
	int err;
	vm_fault_t ret = VM_FAULT_LOCKED;

	/*
	 * Trinity finds that probing a hole which tmpfs is punching can
	 * prevent the hole-punch from ever completing: which in turn
	 * locks writers out with its hold on i_rwsem.  So refrain from
	 * faulting pages into the hole while it's being punched.  Although
	 * shmem_undo_range() does remove the additions, it may be unable to
	 * keep up, as each new page needs its own unmap_mapping_range() call,
	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
	 *
	 * It does not matter if we sometimes reach this check just before the
	 * hole-punch begins, so that one fault then races with the punch:
	 * we just need to make racing faults a rare case.
	 *
	 * The implementation below would be much simpler if we just used a
	 * standard mutex or completion: but we cannot take i_rwsem in fault,
	 * and bloating every shmem inode for this unlikely case would be sad.
	 */
	if (unlikely(inode->i_private)) {
		struct shmem_falloc *shmem_falloc;

		spin_lock(&inode->i_lock);
		shmem_falloc = inode->i_private;
		if (shmem_falloc &&
		    shmem_falloc->waitq &&
		    vmf->pgoff >= shmem_falloc->start &&
		    vmf->pgoff < shmem_falloc->next) {
			struct file *fpin;
			wait_queue_head_t *shmem_falloc_waitq;
			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);

			ret = VM_FAULT_NOPAGE;
			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
			if (fpin)
				ret = VM_FAULT_RETRY;

			shmem_falloc_waitq = shmem_falloc->waitq;
			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
					TASK_UNINTERRUPTIBLE);
			spin_unlock(&inode->i_lock);
			schedule();

			/*
			 * shmem_falloc_waitq points into the shmem_fallocate()
			 * stack of the hole-punching task: shmem_falloc_waitq
			 * is usually invalid by the time we reach here, but
			 * finish_wait() does not dereference it in that case;
			 * though i_lock needed lest racing with wake_up_all().
			 */
			spin_lock(&inode->i_lock);
			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
			spin_unlock(&inode->i_lock);

			if (fpin)
				fput(fpin);
			return ret;
		}
		spin_unlock(&inode->i_lock);
	}

	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
				  gfp, vma, vmf, &ret);
	if (err)
		return vmf_error(err);
	return ret;
}

unsigned long shmem_get_unmapped_area(struct file *file,
				      unsigned long uaddr, unsigned long len,
				      unsigned long pgoff, unsigned long flags)
{
	unsigned long (*get_area)(struct file *,
		unsigned long, unsigned long, unsigned long, unsigned long);
	unsigned long addr;
	unsigned long offset;
	unsigned long inflated_len;
	unsigned long inflated_addr;
	unsigned long inflated_offset;

	if (len > TASK_SIZE)
		return -ENOMEM;

	get_area = current->mm->get_unmapped_area;
	addr = get_area(file, uaddr, len, pgoff, flags);

	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
		return addr;
	if (IS_ERR_VALUE(addr))
		return addr;
	if (addr & ~PAGE_MASK)
		return addr;
	if (addr > TASK_SIZE - len)
		return addr;

	if (shmem_huge == SHMEM_HUGE_DENY)
		return addr;
	if (len < HPAGE_PMD_SIZE)
		return addr;
	if (flags & MAP_FIXED)
		return addr;
	/*
	 * Our priority is to support MAP_SHARED mapped hugely;
	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
	 * But if caller specified an address hint and we allocated area there
	 * successfully, respect that as before.
	 */
	if (uaddr == addr)
		return addr;

	if (shmem_huge != SHMEM_HUGE_FORCE) {
		struct super_block *sb;

		if (file) {
			VM_BUG_ON(file->f_op != &shmem_file_operations);
			sb = file_inode(file)->i_sb;
		} else {
			/*
			 * Called directly from mm/mmap.c, or drivers/char/mem.c
			 * for "/dev/zero", to create a shared anonymous object.
			 */
			if (IS_ERR(shm_mnt))
				return addr;
			sb = shm_mnt->mnt_sb;
		}
		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
			return addr;
	}

	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
		return addr;
	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
		return addr;

	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
	if (inflated_len > TASK_SIZE)
		return addr;
	if (inflated_len < len)
		return addr;

	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
	if (IS_ERR_VALUE(inflated_addr))
		return addr;
	if (inflated_addr & ~PAGE_MASK)
		return addr;

	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
	inflated_addr += offset - inflated_offset;
	if (inflated_offset > offset)
		inflated_addr += HPAGE_PMD_SIZE;

	if (inflated_addr > TASK_SIZE - len)
		return addr;
	return inflated_addr;
}

#ifdef CONFIG_NUMA
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
{
	struct inode *inode = file_inode(vma->vm_file);
	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
}

static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
					  unsigned long addr)
{
	struct inode *inode = file_inode(vma->vm_file);
	pgoff_t index;

	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
}
#endif

int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
	struct inode *inode = file_inode(file);
	struct shmem_inode_info *info = SHMEM_I(inode);
	int retval = -ENOMEM;

	/*
	 * What serializes the accesses to info->flags?
	 * ipc_lock_object() when called from shmctl_do_lock(),
	 * no serialization needed when called from shm_destroy().
	 */
	if (lock && !(info->flags & VM_LOCKED)) {
		if (!user_shm_lock(inode->i_size, ucounts))
			goto out_nomem;
		info->flags |= VM_LOCKED;
		mapping_set_unevictable(file->f_mapping);
	}
	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
		user_shm_unlock(inode->i_size, ucounts);
		info->flags &= ~VM_LOCKED;
		mapping_clear_unevictable(file->f_mapping);
	}
	retval = 0;

out_nomem:
	return retval;
}

static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
	int ret;

	ret = seal_check_future_write(info->seals, vma);
	if (ret)
		return ret;

	/* arm64 - allow memory tagging on RAM-based files */
	vma->vm_flags |= VM_MTE_ALLOWED;

	file_accessed(file);
	vma->vm_ops = &shmem_vm_ops;
	return 0;
}

/* Mask out flags that are inappropriate for the given type of inode. */
static unsigned shmem_mask_flags(umode_t mode, __u32 flags)
{
	if (S_ISDIR(mode))
		return flags;
	else if (S_ISREG(mode))
		return flags & SHMEM_REG_FLMASK;
	else
		return flags & SHMEM_OTHER_FLMASK;
}

static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
				     umode_t mode, dev_t dev, unsigned long flags)
{
	struct inode *inode;
	struct shmem_inode_info *info;
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
	ino_t ino;

	if (shmem_reserve_inode(sb, &ino))
		return NULL;

	inode = new_inode(sb);
	if (inode) {
		inode->i_ino = ino;
		inode_init_owner(&init_user_ns, inode, dir, mode);
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
		inode->i_generation = prandom_u32();
		info = SHMEM_I(inode);
		memset(info, 0, (char *)inode - (char *)info);
		spin_lock_init(&info->lock);
		atomic_set(&info->stop_eviction, 0);
		info->seals = F_SEAL_SEAL;
		info->flags = flags & VM_NORESERVE;
		info->i_crtime = inode->i_mtime;
		info->fsflags = (dir == NULL) ? 0 :
			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
		info->fsflags = shmem_mask_flags(mode, info->fsflags);
		INIT_LIST_HEAD(&info->shrinklist);
		INIT_LIST_HEAD(&info->swaplist);
		simple_xattrs_init(&info->xattrs);
		cache_no_acl(inode);
		mapping_set_large_folios(inode->i_mapping);

		switch (mode & S_IFMT) {
		default:
			inode->i_op = &shmem_special_inode_operations;
			init_special_inode(inode, mode, dev);
			break;
		case S_IFREG:
			inode->i_mapping->a_ops = &shmem_aops;
			inode->i_op = &shmem_inode_operations;
			inode->i_fop = &shmem_file_operations;
			mpol_shared_policy_init(&info->policy,
						 shmem_get_sbmpol(sbinfo));
			break;
		case S_IFDIR:
			inc_nlink(inode);
			/* Some things misbehave if size == 0 on a directory */
			inode->i_size = 2 * BOGO_DIRENT_SIZE;
			inode->i_op = &shmem_dir_inode_operations;
			inode->i_fop = &simple_dir_operations;
			break;
		case S_IFLNK:
			/*
			 * Must not load anything in the rbtree,
			 * mpol_free_shared_policy will not be called.
			 */
			mpol_shared_policy_init(&info->policy, NULL);
			break;
		}

		lockdep_annotate_inode_mutex_key(inode);
	} else
		shmem_free_inode(sb);
	return inode;
}

#ifdef CONFIG_USERFAULTFD
int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
			   pmd_t *dst_pmd,
			   struct vm_area_struct *dst_vma,
			   unsigned long dst_addr,
			   unsigned long src_addr,
			   bool zeropage, bool wp_copy,
			   struct page **pagep)
{
	struct inode *inode = file_inode(dst_vma->vm_file);
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct address_space *mapping = inode->i_mapping;
	gfp_t gfp = mapping_gfp_mask(mapping);
	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
	void *page_kaddr;
	struct folio *folio;
	struct page *page;
	int ret;
	pgoff_t max_off;

	if (!shmem_inode_acct_block(inode, 1)) {
		/*
		 * We may have got a page, returned -ENOENT triggering a retry,
		 * and now we find ourselves with -ENOMEM. Release the page, to
		 * avoid a BUG_ON in our caller.
		 */
		if (unlikely(*pagep)) {
			put_page(*pagep);
			*pagep = NULL;
		}
		return -ENOMEM;
	}

	if (!*pagep) {
		ret = -ENOMEM;
		page = shmem_alloc_page(gfp, info, pgoff);
		if (!page)
			goto out_unacct_blocks;

		if (!zeropage) {	/* COPY */
			page_kaddr = kmap_atomic(page);
			ret = copy_from_user(page_kaddr,
					     (const void __user *)src_addr,
					     PAGE_SIZE);
			kunmap_atomic(page_kaddr);

			/* fallback to copy_from_user outside mmap_lock */
			if (unlikely(ret)) {
				*pagep = page;
				ret = -ENOENT;
				/* don't free the page */
				goto out_unacct_blocks;
			}

			flush_dcache_page(page);
		} else {		/* ZEROPAGE */
			clear_user_highpage(page, dst_addr);
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	VM_BUG_ON(PageLocked(page));
	VM_BUG_ON(PageSwapBacked(page));
	__SetPageLocked(page);
	__SetPageSwapBacked(page);
	__SetPageUptodate(page);

	ret = -EFAULT;
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(pgoff >= max_off))
		goto out_release;

	folio = page_folio(page);
	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
				      gfp & GFP_RECLAIM_MASK, dst_mm);
	if (ret)
		goto out_release;

	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
				       page, true, wp_copy);
	if (ret)
		goto out_delete_from_cache;

	spin_lock_irq(&info->lock);
	info->alloced++;
	inode->i_blocks += BLOCKS_PER_PAGE;
	shmem_recalc_inode(inode);
	spin_unlock_irq(&info->lock);

	unlock_page(page);
	return 0;
out_delete_from_cache:
	delete_from_page_cache(page);
out_release:
	unlock_page(page);
	put_page(page);
out_unacct_blocks:
	shmem_inode_unacct_blocks(inode, 1);
	return ret;
}
#endif /* CONFIG_USERFAULTFD */

#ifdef CONFIG_TMPFS
static const struct inode_operations shmem_symlink_inode_operations;
static const struct inode_operations shmem_short_symlink_operations;

#ifdef CONFIG_TMPFS_XATTR
static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
#else
#define shmem_initxattrs NULL
#endif

static int
shmem_write_begin(struct file *file, struct address_space *mapping,
			loff_t pos, unsigned len,
			struct page **pagep, void **fsdata)
{
	struct inode *inode = mapping->host;
	struct shmem_inode_info *info = SHMEM_I(inode);
	pgoff_t index = pos >> PAGE_SHIFT;
	int ret = 0;

	/* i_rwsem is held by caller */
	if (unlikely(info->seals & (F_SEAL_GROW |
				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
			return -EPERM;
		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
			return -EPERM;
	}

	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);

	if (ret)
		return ret;

	if (PageHWPoison(*pagep)) {
		unlock_page(*pagep);
		put_page(*pagep);
		*pagep = NULL;
		return -EIO;
	}

	return 0;
}

static int
shmem_write_end(struct file *file, struct address_space *mapping,
			loff_t pos, unsigned len, unsigned copied,
			struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;

	if (pos + copied > inode->i_size)
		i_size_write(inode, pos + copied);

	if (!PageUptodate(page)) {
		struct page *head = compound_head(page);
		if (PageTransCompound(page)) {
			int i;

			for (i = 0; i < HPAGE_PMD_NR; i++) {
				if (head + i == page)
					continue;
				clear_highpage(head + i);
				flush_dcache_page(head + i);
			}
		}
		if (copied < PAGE_SIZE) {
			unsigned from = pos & (PAGE_SIZE - 1);
			zero_user_segments(page, 0, from,
					from + copied, PAGE_SIZE);
		}
		SetPageUptodate(head);
	}
	set_page_dirty(page);
	unlock_page(page);
	put_page(page);

	return copied;
}

static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file_inode(file);
	struct address_space *mapping = inode->i_mapping;
	pgoff_t index;
	unsigned long offset;
	int error = 0;
	ssize_t retval = 0;
	loff_t *ppos = &iocb->ki_pos;

	index = *ppos >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;

	for (;;) {
		struct page *page = NULL;
		pgoff_t end_index;
		unsigned long nr, ret;
		loff_t i_size = i_size_read(inode);

		end_index = i_size >> PAGE_SHIFT;
		if (index > end_index)
			break;
		if (index == end_index) {
			nr = i_size & ~PAGE_MASK;
			if (nr <= offset)
				break;
		}

		error = shmem_getpage(inode, index, &page, SGP_READ);
		if (error) {
			if (error == -EINVAL)
				error = 0;
			break;
		}
		if (page) {
			unlock_page(page);

			if (PageHWPoison(page)) {
				put_page(page);
				error = -EIO;
				break;
			}
		}

		/*
		 * We must evaluate after, since reads (unlike writes)
		 * are called without i_rwsem protection against truncate
		 */
		nr = PAGE_SIZE;
		i_size = i_size_read(inode);
		end_index = i_size >> PAGE_SHIFT;
		if (index == end_index) {
			nr = i_size & ~PAGE_MASK;
			if (nr <= offset) {
				if (page)
					put_page(page);
				break;
			}
		}
		nr -= offset;

		if (page) {
			/*
			 * If users can be writing to this page using arbitrary
			 * virtual addresses, take care about potential aliasing
			 * before reading the page on the kernel side.
			 */
			if (mapping_writably_mapped(mapping))
				flush_dcache_page(page);
			/*
			 * Mark the page accessed if we read the beginning.
			 */
			if (!offset)
				mark_page_accessed(page);
			/*
			 * Ok, we have the page, and it's up-to-date, so
			 * now we can copy it to user space...
			 */
			ret = copy_page_to_iter(page, offset, nr, to);
			put_page(page);

		} else if (user_backed_iter(to)) {
			/*
			 * Copy to user tends to be so well optimized, but
			 * clear_user() not so much, that it is noticeably
			 * faster to copy the zero page instead of clearing.
			 */
			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
		} else {
			/*
			 * But submitting the same page twice in a row to
			 * splice() - or others? - can result in confusion:
			 * so don't attempt that optimization on pipes etc.
			 */
			ret = iov_iter_zero(nr, to);
		}

		retval += ret;
		offset += ret;
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;

		if (!iov_iter_count(to))
			break;
		if (ret < nr) {
			error = -EFAULT;
			break;
		}
		cond_resched();
	}

	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
	file_accessed(file);
	return retval ? retval : error;
}

static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
{
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;

	if (whence != SEEK_DATA && whence != SEEK_HOLE)
		return generic_file_llseek_size(file, offset, whence,
					MAX_LFS_FILESIZE, i_size_read(inode));
	if (offset < 0)
		return -ENXIO;

	inode_lock(inode);
	/* We're holding i_rwsem so we can access i_size directly */
	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
	if (offset >= 0)
		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
	inode_unlock(inode);
	return offset;
}

static long shmem_fallocate(struct file *file, int mode, loff_t offset,
							 loff_t len)
{
	struct inode *inode = file_inode(file);
	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
	struct shmem_inode_info *info = SHMEM_I(inode);
	struct shmem_falloc shmem_falloc;
	pgoff_t start, index, end, undo_fallocend;
	int error;

	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
		return -EOPNOTSUPP;

	inode_lock(inode);

	if (mode & FALLOC_FL_PUNCH_HOLE) {
		struct address_space *mapping = file->f_mapping;
		loff_t unmap_start = round_up(offset, PAGE_SIZE);
		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);

		/* protected by i_rwsem */
		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
			error = -EPERM;
			goto out;
		}

		shmem_falloc.waitq = &shmem_falloc_waitq;
		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
		spin_lock(&inode->i_lock);
		inode->i_private = &shmem_falloc;
		spin_unlock(&inode->i_lock);

		if ((u64)unmap_end > (u64)unmap_start)
			unmap_mapping_range(mapping, unmap_start,
					    1 + unmap_end - unmap_start, 0);
		shmem_truncate_range(inode, offset, offset + len - 1);
		/* No need to unmap again: hole-punching leaves COWed pages */

		spin_lock(&inode->i_lock);
		inode->i_private = NULL;
		wake_up_all(&shmem_falloc_waitq);
		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
		spin_unlock(&inode->i_lock);
		error = 0;
		goto out;
	}

	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
	error = inode_newsize_ok(inode, offset + len);
	if (error)
		goto out;

	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
		error = -EPERM;
		goto out;
	}

	start = offset >> PAGE_SHIFT;
	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	/* Try to avoid a swapstorm if len is impossible to satisfy */
	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
		error = -ENOSPC;
		goto out;
	}

	shmem_falloc.waitq = NULL;
	shmem_falloc.start = start;
	shmem_falloc.next  = start;
	shmem_falloc.nr_falloced = 0;
	shmem_falloc.nr_unswapped = 0;
	spin_lock(&inode->i_lock);
	inode->i_private = &shmem_falloc;
	spin_unlock(&inode->i_lock);

	/*
	 * info->fallocend is only relevant when huge pages might be
	 * involved: to prevent split_huge_page() freeing fallocated
	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
	 */
	undo_fallocend = info->fallocend;
	if (info->fallocend < end)
		info->fallocend = end;

	for (index = start; index < end; ) {
		struct page *page;

		/*
		 * Good, the fallocate(2) manpage permits EINTR: we may have
		 * been interrupted because we are using up too much memory.
		 */
		if (signal_pending(current))
			error = -EINTR;
		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
			error = -ENOMEM;
		else
			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
		if (error) {
			info->fallocend = undo_fallocend;
			/* Remove the !PageUptodate pages we added */
			if (index > start) {
				shmem_undo_range(inode,
				    (loff_t)start << PAGE_SHIFT,
				    ((loff_t)index << PAGE_SHIFT) - 1, true);
			}
			goto undone;
		}

		index++;
		/*
		 * Here is a more important optimization than it appears:
		 * a second SGP_FALLOC on the same huge page will clear it,
		 * making it PageUptodate and un-undoable if we fail later.
		 */
		if (PageTransCompound(page)) {
			index = round_up(index, HPAGE_PMD_NR);
			/* Beware 32-bit wraparound */
			if (!index)
				index--;
		}

		/*
		 * Inform shmem_writepage() how far we have reached.
		 * No need for lock or barrier: we have the page lock.
		 */
		if (!PageUptodate(page))
			shmem_falloc.nr_falloced += index - shmem_falloc.next;
		shmem_falloc.next = index;

		/*
		 * If !PageUptodate, leave it that way so that freeable pages
		 * can be recognized if we need to rollback on error later.
		 * But set_page_dirty so that memory pressure will swap rather
		 * than free the pages we are allocating (and SGP_CACHE pages
		 * might still be clean: we now need to mark those dirty too).
		 */
		set_page_dirty(page);
		unlock_page(page);
		put_page(page);
		cond_resched();
	}

	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
		i_size_write(inode, offset + len);
	inode->i_ctime = current_time(inode);
undone:
	spin_lock(&inode->i_lock);
	inode->i_private = NULL;
	spin_unlock(&inode->i_lock);
out:
	inode_unlock(inode);
	return error;
}

static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);

	buf->f_type = TMPFS_MAGIC;
	buf->f_bsize = PAGE_SIZE;
	buf->f_namelen = NAME_MAX;
	if (sbinfo->max_blocks) {
		buf->f_blocks = sbinfo->max_blocks;
		buf->f_bavail =
		buf->f_bfree  = sbinfo->max_blocks -
				percpu_counter_sum(&sbinfo->used_blocks);
	}
	if (sbinfo->max_inodes) {
		buf->f_files = sbinfo->max_inodes;
		buf->f_ffree = sbinfo->free_inodes;
	}
	/* else leave those fields 0 like simple_statfs */

	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);

	return 0;
}

/*
 * File creation. Allocate an inode, and we're done..
 */
static int
shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
	    struct dentry *dentry, umode_t mode, dev_t dev)
{
	struct inode *inode;
	int error = -ENOSPC;

	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
	if (inode) {
		error = simple_acl_create(dir, inode);
		if (error)
			goto out_iput;
		error = security_inode_init_security(inode, dir,
						     &dentry->d_name,
						     shmem_initxattrs, NULL);
		if (error && error != -EOPNOTSUPP)
			goto out_iput;

		error = 0;
		dir->i_size += BOGO_DIRENT_SIZE;
		dir->i_ctime = dir->i_mtime = current_time(dir);
		d_instantiate(dentry, inode);
		dget(dentry); /* Extra count - pin the dentry in core */
	}
	return error;
out_iput:
	iput(inode);
	return error;
}

static int
shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
	      struct dentry *dentry, umode_t mode)
{
	struct inode *inode;
	int error = -ENOSPC;

	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
	if (inode) {
		error = security_inode_init_security(inode, dir,
						     NULL,
						     shmem_initxattrs, NULL);
		if (error && error != -EOPNOTSUPP)
			goto out_iput;
		error = simple_acl_create(dir, inode);
		if (error)
			goto out_iput;
		d_tmpfile(dentry, inode);
	}
	return error;
out_iput:
	iput(inode);
	return error;
}

static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
		       struct dentry *dentry, umode_t mode)
{
	int error;

	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
				 mode | S_IFDIR, 0)))
		return error;
	inc_nlink(dir);
	return 0;
}

static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
			struct dentry *dentry, umode_t mode, bool excl)
{
	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
}

/*
 * Link a file..
 */
static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = d_inode(old_dentry);
	int ret = 0;

	/*
	 * No ordinary (disk based) filesystem counts links as inodes;
	 * but each new link needs a new dentry, pinning lowmem, and
	 * tmpfs dentries cannot be pruned until they are unlinked.
	 * But if an O_TMPFILE file is linked into the tmpfs, the
	 * first link must skip that, to get the accounting right.
	 */
	if (inode->i_nlink) {
		ret = shmem_reserve_inode(inode->i_sb, NULL);
		if (ret)
			goto out;
	}

	dir->i_size += BOGO_DIRENT_SIZE;
	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
	inc_nlink(inode);
	ihold(inode);	/* New dentry reference */
	dget(dentry);		/* Extra pinning count for the created dentry */
	d_instantiate(dentry, inode);
out:
	return ret;
}

static int shmem_unlink(struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = d_inode(dentry);

	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
		shmem_free_inode(inode->i_sb);

	dir->i_size -= BOGO_DIRENT_SIZE;
	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
	drop_nlink(inode);
	dput(dentry);	/* Undo the count from "create" - this does all the work */
	return 0;
}

static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
{
	if (!simple_empty(dentry))
		return -ENOTEMPTY;

	drop_nlink(d_inode(dentry));
	drop_nlink(dir);
	return shmem_unlink(dir, dentry);
}

static int shmem_whiteout(struct user_namespace *mnt_userns,
			  struct inode *old_dir, struct dentry *old_dentry)
{
	struct dentry *whiteout;
	int error;

	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
	if (!whiteout)
		return -ENOMEM;

	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
	dput(whiteout);
	if (error)
		return error;

	/*
	 * Cheat and hash the whiteout while the old dentry is still in
	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
	 *
	 * d_lookup() will consistently find one of them at this point,
	 * not sure which one, but that isn't even important.
	 */
	d_rehash(whiteout);
	return 0;
}

/*
 * The VFS layer already does all the dentry stuff for rename,
 * we just have to decrement the usage count for the target if
 * it exists so that the VFS layer correctly free's it when it
 * gets overwritten.
 */
static int shmem_rename2(struct user_namespace *mnt_userns,
			 struct inode *old_dir, struct dentry *old_dentry,
			 struct inode *new_dir, struct dentry *new_dentry,
			 unsigned int flags)
{
	struct inode *inode = d_inode(old_dentry);
	int they_are_dirs = S_ISDIR(inode->i_mode);

	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
		return -EINVAL;

	if (flags & RENAME_EXCHANGE)
		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);

	if (!simple_empty(new_dentry))
		return -ENOTEMPTY;

	if (flags & RENAME_WHITEOUT) {
		int error;

		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
		if (error)
			return error;
	}

	if (d_really_is_positive(new_dentry)) {
		(void) shmem_unlink(new_dir, new_dentry);
		if (they_are_dirs) {
			drop_nlink(d_inode(new_dentry));
			drop_nlink(old_dir);
		}
	} else if (they_are_dirs) {
		drop_nlink(old_dir);
		inc_nlink(new_dir);
	}

	old_dir->i_size -= BOGO_DIRENT_SIZE;
	new_dir->i_size += BOGO_DIRENT_SIZE;
	old_dir->i_ctime = old_dir->i_mtime =
	new_dir->i_ctime = new_dir->i_mtime =
	inode->i_ctime = current_time(old_dir);
	return 0;
}

static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
			 struct dentry *dentry, const char *symname)
{
	int error;
	int len;
	struct inode *inode;
	struct page *page;

	len = strlen(symname) + 1;
	if (len > PAGE_SIZE)
		return -ENAMETOOLONG;

	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
				VM_NORESERVE);
	if (!inode)
		return -ENOSPC;

	error = security_inode_init_security(inode, dir, &dentry->d_name,
					     shmem_initxattrs, NULL);
	if (error && error != -EOPNOTSUPP) {
		iput(inode);
		return error;
	}

	inode->i_size = len-1;
	if (len <= SHORT_SYMLINK_LEN) {
		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
		if (!inode->i_link) {
			iput(inode);
			return -ENOMEM;
		}
		inode->i_op = &shmem_short_symlink_operations;
	} else {
		inode_nohighmem(inode);
		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
		if (error) {
			iput(inode);
			return error;
		}
		inode->i_mapping->a_ops = &shmem_aops;
		inode->i_op = &shmem_symlink_inode_operations;
		memcpy(page_address(page), symname, len);
		SetPageUptodate(page);
		set_page_dirty(page);
		unlock_page(page);
		put_page(page);
	}
	dir->i_size += BOGO_DIRENT_SIZE;
	dir->i_ctime = dir->i_mtime = current_time(dir);
	d_instantiate(dentry, inode);
	dget(dentry);
	return 0;
}

static void shmem_put_link(void *arg)
{
	mark_page_accessed(arg);
	put_page(arg);
}

static const char *shmem_get_link(struct dentry *dentry,
				  struct inode *inode,
				  struct delayed_call *done)
{
	struct page *page = NULL;
	int error;
	if (!dentry) {
		page = find_get_page(inode->i_mapping, 0);
		if (!page)
			return ERR_PTR(-ECHILD);
		if (PageHWPoison(page) ||
		    !PageUptodate(page)) {
			put_page(page);
			return ERR_PTR(-ECHILD);
		}
	} else {
		error = shmem_getpage(inode, 0, &page, SGP_READ);
		if (error)
			return ERR_PTR(error);
		if (!page)
			return ERR_PTR(-ECHILD);
		if (PageHWPoison(page)) {
			unlock_page(page);
			put_page(page);
			return ERR_PTR(-ECHILD);
		}
		unlock_page(page);
	}
	set_delayed_call(done, shmem_put_link, page);
	return page_address(page);
}

#ifdef CONFIG_TMPFS_XATTR

static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));

	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);

	return 0;
}

static int shmem_fileattr_set(struct user_namespace *mnt_userns,
			      struct dentry *dentry, struct fileattr *fa)
{
	struct inode *inode = d_inode(dentry);
	struct shmem_inode_info *info = SHMEM_I(inode);

	if (fileattr_has_fsx(fa))
		return -EOPNOTSUPP;

	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
		(fa->flags & SHMEM_FL_USER_MODIFIABLE);

	inode->i_flags &= ~(S_APPEND | S_IMMUTABLE | S_NOATIME);
	if (info->fsflags & FS_APPEND_FL)
		inode->i_flags |= S_APPEND;
	if (info->fsflags & FS_IMMUTABLE_FL)
		inode->i_flags |= S_IMMUTABLE;
	if (info->fsflags & FS_NOATIME_FL)
		inode->i_flags |= S_NOATIME;

	inode->i_ctime = current_time(inode);
	return 0;
}

/*
 * Superblocks without xattr inode operations may get some security.* xattr
 * support from the LSM "for free". As soon as we have any other xattrs
 * like ACLs, we also need to implement the security.* handlers at
 * filesystem level, though.
 */

/*
 * Callback for security_inode_init_security() for acquiring xattrs.
 */
static int shmem_initxattrs(struct inode *inode,
			    const struct xattr *xattr_array,
			    void *fs_info)
{
	struct shmem_inode_info *info = SHMEM_I(inode);
	const struct xattr *xattr;
	struct simple_xattr *new_xattr;
	size_t len;

	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
		if (!new_xattr)
			return -ENOMEM;

		len = strlen(xattr->name) + 1;
		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
					  GFP_KERNEL);
		if (!new_xattr->name) {
			kvfree(new_xattr);
			return -ENOMEM;
		}

		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
		       XATTR_SECURITY_PREFIX_LEN);
		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
		       xattr->name, len);

		simple_xattr_list_add(&info->xattrs, new_xattr);
	}

	return 0;
}

static int shmem_xattr_handler_get(const struct xattr_handler *handler,
				   struct dentry *unused, struct inode *inode,
				   const char *name, void *buffer, size_t size)
{
	struct shmem_inode_info *info = SHMEM_I(inode);

	name = xattr_full_name(handler, name);
	return simple_xattr_get(&info->xattrs, name, buffer, size);
}

static int shmem_xattr_handler_set(const struct xattr_handler *handler,
				   struct user_namespace *mnt_userns,
				   struct dentry *unused, struct inode *inode,
				   const char *name, const void *value,
				   size_t size, int flags)
{
	struct shmem_inode_info *info = SHMEM_I(inode);

	name = xattr_full_name(handler, name);
	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
}

static const struct xattr_handler shmem_security_xattr_handler = {
	.prefix = XATTR_SECURITY_PREFIX,
	.get = shmem_xattr_handler_get,
	.set = shmem_xattr_handler_set,
};

static const struct xattr_handler shmem_trusted_xattr_handler = {
	.prefix = XATTR_TRUSTED_PREFIX,
	.get = shmem_xattr_handler_get,
	.set = shmem_xattr_handler_set,
};

static const struct xattr_handler *shmem_xattr_handlers[] = {
#ifdef CONFIG_TMPFS_POSIX_ACL
	&posix_acl_access_xattr_handler,
	&posix_acl_default_xattr_handler,
#endif
	&shmem_security_xattr_handler,
	&shmem_trusted_xattr_handler,
	NULL
};

static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
}
#endif /* CONFIG_TMPFS_XATTR */

static const struct inode_operations shmem_short_symlink_operations = {
	.getattr	= shmem_getattr,
	.get_link	= simple_get_link,
#ifdef CONFIG_TMPFS_XATTR
	.listxattr	= shmem_listxattr,
#endif
};

static const struct inode_operations shmem_symlink_inode_operations = {
	.getattr	= shmem_getattr,
	.get_link	= shmem_get_link,
#ifdef CONFIG_TMPFS_XATTR
	.listxattr	= shmem_listxattr,
#endif
};

static struct dentry *shmem_get_parent(struct dentry *child)
{
	return ERR_PTR(-ESTALE);
}

static int shmem_match(struct inode *ino, void *vfh)
{
	__u32 *fh = vfh;
	__u64 inum = fh[2];
	inum = (inum << 32) | fh[1];
	return ino->i_ino == inum && fh[0] == ino->i_generation;
}

/* Find any alias of inode, but prefer a hashed alias */
static struct dentry *shmem_find_alias(struct inode *inode)
{
	struct dentry *alias = d_find_alias(inode);

	return alias ?: d_find_any_alias(inode);
}


static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
		struct fid *fid, int fh_len, int fh_type)
{
	struct inode *inode;
	struct dentry *dentry = NULL;
	u64 inum;

	if (fh_len < 3)
		return NULL;

	inum = fid->raw[2];
	inum = (inum << 32) | fid->raw[1];

	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
			shmem_match, fid->raw);
	if (inode) {
		dentry = shmem_find_alias(inode);
		iput(inode);
	}

	return dentry;
}

static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
				struct inode *parent)
{
	if (*len < 3) {
		*len = 3;
		return FILEID_INVALID;
	}

	if (inode_unhashed(inode)) {
		/* Unfortunately insert_inode_hash is not idempotent,
		 * so as we hash inodes here rather than at creation
		 * time, we need a lock to ensure we only try
		 * to do it once
		 */
		static DEFINE_SPINLOCK(lock);
		spin_lock(&lock);
		if (inode_unhashed(inode))
			__insert_inode_hash(inode,
					    inode->i_ino + inode->i_generation);
		spin_unlock(&lock);
	}

	fh[0] = inode->i_generation;
	fh[1] = inode->i_ino;
	fh[2] = ((__u64)inode->i_ino) >> 32;

	*len = 3;
	return 1;
}

static const struct export_operations shmem_export_ops = {
	.get_parent     = shmem_get_parent,
	.encode_fh      = shmem_encode_fh,
	.fh_to_dentry	= shmem_fh_to_dentry,
};

enum shmem_param {
	Opt_gid,
	Opt_huge,
	Opt_mode,
	Opt_mpol,
	Opt_nr_blocks,
	Opt_nr_inodes,
	Opt_size,
	Opt_uid,
	Opt_inode32,
	Opt_inode64,
};

static const struct constant_table shmem_param_enums_huge[] = {
	{"never",	SHMEM_HUGE_NEVER },
	{"always",	SHMEM_HUGE_ALWAYS },
	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
	{"advise",	SHMEM_HUGE_ADVISE },
	{}
};

const struct fs_parameter_spec shmem_fs_parameters[] = {
	fsparam_u32   ("gid",		Opt_gid),
	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
	fsparam_u32oct("mode",		Opt_mode),
	fsparam_string("mpol",		Opt_mpol),
	fsparam_string("nr_blocks",	Opt_nr_blocks),
	fsparam_string("nr_inodes",	Opt_nr_inodes),
	fsparam_string("size",		Opt_size),
	fsparam_u32   ("uid",		Opt_uid),
	fsparam_flag  ("inode32",	Opt_inode32),
	fsparam_flag  ("inode64",	Opt_inode64),
	{}
};

static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
{
	struct shmem_options *ctx = fc->fs_private;
	struct fs_parse_result result;
	unsigned long long size;
	char *rest;
	int opt;

	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
	if (opt < 0)
		return opt;

	switch (opt) {
	case Opt_size:
		size = memparse(param->string, &rest);
		if (*rest == '%') {
			size <<= PAGE_SHIFT;
			size *= totalram_pages();
			do_div(size, 100);
			rest++;
		}
		if (*rest)
			goto bad_value;
		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
		ctx->seen |= SHMEM_SEEN_BLOCKS;
		break;
	case Opt_nr_blocks:
		ctx->blocks = memparse(param->string, &rest);
		if (*rest || ctx->blocks > S64_MAX)
			goto bad_value;
		ctx->seen |= SHMEM_SEEN_BLOCKS;
		break;
	case Opt_nr_inodes:
		ctx->inodes = memparse(param->string, &rest);
		if (*rest)
			goto bad_value;
		ctx->seen |= SHMEM_SEEN_INODES;
		break;
	case Opt_mode:
		ctx->mode = result.uint_32 & 07777;
		break;
	case Opt_uid:
		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
		if (!uid_valid(ctx->uid))
			goto bad_value;
		break;
	case Opt_gid:
		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
		if (!gid_valid(ctx->gid))
			goto bad_value;
		break;
	case Opt_huge:
		ctx->huge = result.uint_32;
		if (ctx->huge != SHMEM_HUGE_NEVER &&
		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
		      has_transparent_hugepage()))
			goto unsupported_parameter;
		ctx->seen |= SHMEM_SEEN_HUGE;
		break;
	case Opt_mpol:
		if (IS_ENABLED(CONFIG_NUMA)) {
			mpol_put(ctx->mpol);
			ctx->mpol = NULL;
			if (mpol_parse_str(param->string, &ctx->mpol))
				goto bad_value;
			break;
		}
		goto unsupported_parameter;
	case Opt_inode32:
		ctx->full_inums = false;
		ctx->seen |= SHMEM_SEEN_INUMS;
		break;
	case Opt_inode64:
		if (sizeof(ino_t) < 8) {
			return invalfc(fc,
				       "Cannot use inode64 with <64bit inums in kernel\n");
		}
		ctx->full_inums = true;
		ctx->seen |= SHMEM_SEEN_INUMS;
		break;
	}
	return 0;

unsupported_parameter:
	return invalfc(fc, "Unsupported parameter '%s'", param->key);
bad_value:
	return invalfc(fc, "Bad value for '%s'", param->key);
}

static int shmem_parse_options(struct fs_context *fc, void *data)
{
	char *options = data;

	if (options) {
		int err = security_sb_eat_lsm_opts(options, &fc->security);
		if (err)
			return err;
	}

	while (options != NULL) {
		char *this_char = options;
		for (;;) {
			/*
			 * NUL-terminate this option: unfortunately,
			 * mount options form a comma-separated list,
			 * but mpol's nodelist may also contain commas.
			 */
			options = strchr(options, ',');
			if (options == NULL)
				break;
			options++;
			if (!isdigit(*options)) {
				options[-1] = '\0';
				break;
			}
		}
		if (*this_char) {
			char *value = strchr(this_char, '=');
			size_t len = 0;
			int err;

			if (value) {
				*value++ = '\0';
				len = strlen(value);
			}
			err = vfs_parse_fs_string(fc, this_char, value, len);
			if (err < 0)
				return err;
		}
	}
	return 0;
}

/*
 * Reconfigure a shmem filesystem.
 *
 * Note that we disallow change from limited->unlimited blocks/inodes while any
 * are in use; but we must separately disallow unlimited->limited, because in
 * that case we have no record of how much is already in use.
 */
static int shmem_reconfigure(struct fs_context *fc)
{
	struct shmem_options *ctx = fc->fs_private;
	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
	unsigned long inodes;
	struct mempolicy *mpol = NULL;
	const char *err;

	raw_spin_lock(&sbinfo->stat_lock);
	inodes = sbinfo->max_inodes - sbinfo->free_inodes;

	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
		if (!sbinfo->max_blocks) {
			err = "Cannot retroactively limit size";
			goto out;
		}
		if (percpu_counter_compare(&sbinfo->used_blocks,
					   ctx->blocks) > 0) {
			err = "Too small a size for current use";
			goto out;
		}
	}
	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
		if (!sbinfo->max_inodes) {
			err = "Cannot retroactively limit inodes";
			goto out;
		}
		if (ctx->inodes < inodes) {
			err = "Too few inodes for current use";
			goto out;
		}
	}

	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
	    sbinfo->next_ino > UINT_MAX) {
		err = "Current inum too high to switch to 32-bit inums";
		goto out;
	}

	if (ctx->seen & SHMEM_SEEN_HUGE)
		sbinfo->huge = ctx->huge;
	if (ctx->seen & SHMEM_SEEN_INUMS)
		sbinfo->full_inums = ctx->full_inums;
	if (ctx->seen & SHMEM_SEEN_BLOCKS)
		sbinfo->max_blocks  = ctx->blocks;
	if (ctx->seen & SHMEM_SEEN_INODES) {
		sbinfo->max_inodes  = ctx->inodes;
		sbinfo->free_inodes = ctx->inodes - inodes;
	}

	/*
	 * Preserve previous mempolicy unless mpol remount option was specified.
	 */
	if (ctx->mpol) {
		mpol = sbinfo->mpol;
		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
		ctx->mpol = NULL;
	}
	raw_spin_unlock(&sbinfo->stat_lock);
	mpol_put(mpol);
	return 0;
out:
	raw_spin_unlock(&sbinfo->stat_lock);
	return invalfc(fc, "%s", err);
}

static int shmem_show_options(struct seq_file *seq, struct dentry *root)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);

	if (sbinfo->max_blocks != shmem_default_max_blocks())
		seq_printf(seq, ",size=%luk",
			sbinfo->max_blocks << (PAGE_SHIFT - 10));
	if (sbinfo->max_inodes != shmem_default_max_inodes())
		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
	if (sbinfo->mode != (0777 | S_ISVTX))
		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
		seq_printf(seq, ",uid=%u",
				from_kuid_munged(&init_user_ns, sbinfo->uid));
	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
		seq_printf(seq, ",gid=%u",
				from_kgid_munged(&init_user_ns, sbinfo->gid));

	/*
	 * Showing inode{64,32} might be useful even if it's the system default,
	 * since then people don't have to resort to checking both here and
	 * /proc/config.gz to confirm 64-bit inums were successfully applied
	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
	 *
	 * We hide it when inode64 isn't the default and we are using 32-bit
	 * inodes, since that probably just means the feature isn't even under
	 * consideration.
	 *
	 * As such:
	 *
	 *                     +-----------------+-----------------+
	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
	 *  +------------------+-----------------+-----------------+
	 *  | full_inums=true  | show            | show            |
	 *  | full_inums=false | show            | hide            |
	 *  +------------------+-----------------+-----------------+
	 *
	 */
	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
	if (sbinfo->huge)
		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
#endif
	shmem_show_mpol(seq, sbinfo->mpol);
	return 0;
}

#endif /* CONFIG_TMPFS */

static void shmem_put_super(struct super_block *sb)
{
	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);

	free_percpu(sbinfo->ino_batch);
	percpu_counter_destroy(&sbinfo->used_blocks);
	mpol_put(sbinfo->mpol);
	kfree(sbinfo);
	sb->s_fs_info = NULL;
}

static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
{
	struct shmem_options *ctx = fc->fs_private;
	struct inode *inode;
	struct shmem_sb_info *sbinfo;

	/* Round up to L1_CACHE_BYTES to resist false sharing */
	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
				L1_CACHE_BYTES), GFP_KERNEL);
	if (!sbinfo)
		return -ENOMEM;

	sb->s_fs_info = sbinfo;

#ifdef CONFIG_TMPFS
	/*
	 * Per default we only allow half of the physical ram per
	 * tmpfs instance, limiting inodes to one per page of lowmem;
	 * but the internal instance is left unlimited.
	 */
	if (!(sb->s_flags & SB_KERNMOUNT)) {
		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
			ctx->blocks = shmem_default_max_blocks();
		if (!(ctx->seen & SHMEM_SEEN_INODES))
			ctx->inodes = shmem_default_max_inodes();
		if (!(ctx->seen & SHMEM_SEEN_INUMS))
			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
	} else {
		sb->s_flags |= SB_NOUSER;
	}
	sb->s_export_op = &shmem_export_ops;
	sb->s_flags |= SB_NOSEC;
#else
	sb->s_flags |= SB_NOUSER;
#endif
	sbinfo->max_blocks = ctx->blocks;
	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
	if (sb->s_flags & SB_KERNMOUNT) {
		sbinfo->ino_batch = alloc_percpu(ino_t);
		if (!sbinfo->ino_batch)
			goto failed;
	}
	sbinfo->uid = ctx->uid;
	sbinfo->gid = ctx->gid;
	sbinfo->full_inums = ctx->full_inums;
	sbinfo->mode = ctx->mode;
	sbinfo->huge = ctx->huge;
	sbinfo->mpol = ctx->mpol;
	ctx->mpol = NULL;

	raw_spin_lock_init(&sbinfo->stat_lock);
	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
		goto failed;
	spin_lock_init(&sbinfo->shrinklist_lock);
	INIT_LIST_HEAD(&sbinfo->shrinklist);

	sb->s_maxbytes = MAX_LFS_FILESIZE;
	sb->s_blocksize = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
	sb->s_magic = TMPFS_MAGIC;
	sb->s_op = &shmem_ops;
	sb->s_time_gran = 1;
#ifdef CONFIG_TMPFS_XATTR
	sb->s_xattr = shmem_xattr_handlers;
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
	sb->s_flags |= SB_POSIXACL;
#endif
	uuid_gen(&sb->s_uuid);

	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
	if (!inode)
		goto failed;
	inode->i_uid = sbinfo->uid;
	inode->i_gid = sbinfo->gid;
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
		goto failed;
	return 0;

failed:
	shmem_put_super(sb);
	return -ENOMEM;
}

static int shmem_get_tree(struct fs_context *fc)
{
	return get_tree_nodev(fc, shmem_fill_super);
}

static void shmem_free_fc(struct fs_context *fc)
{
	struct shmem_options *ctx = fc->fs_private;

	if (ctx) {
		mpol_put(ctx->mpol);
		kfree(ctx);
	}
}

static const struct fs_context_operations shmem_fs_context_ops = {
	.free			= shmem_free_fc,
	.get_tree		= shmem_get_tree,
#ifdef CONFIG_TMPFS
	.parse_monolithic	= shmem_parse_options,
	.parse_param		= shmem_parse_one,
	.reconfigure		= shmem_reconfigure,
#endif
};

static struct kmem_cache *shmem_inode_cachep;

static struct inode *shmem_alloc_inode(struct super_block *sb)
{
	struct shmem_inode_info *info;
	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
	if (!info)
		return NULL;
	return &info->vfs_inode;
}

static void shmem_free_in_core_inode(struct inode *inode)
{
	if (S_ISLNK(inode->i_mode))
		kfree(inode->i_link);
	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}

static void shmem_destroy_inode(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
}

static void shmem_init_inode(void *foo)
{
	struct shmem_inode_info *info = foo;
	inode_init_once(&info->vfs_inode);
}

static void shmem_init_inodecache(void)
{
	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
				sizeof(struct shmem_inode_info),
				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
}

static void shmem_destroy_inodecache(void)
{
	kmem_cache_destroy(shmem_inode_cachep);
}

/* Keep the page in page cache instead of truncating it */
static int shmem_error_remove_page(struct address_space *mapping,
				   struct page *page)
{
	return 0;
}

const struct address_space_operations shmem_aops = {
	.writepage	= shmem_writepage,
	.dirty_folio	= noop_dirty_folio,
#ifdef CONFIG_TMPFS
	.write_begin	= shmem_write_begin,
	.write_end	= shmem_write_end,
#endif
#ifdef CONFIG_MIGRATION
	.migrate_folio	= migrate_folio,
#endif
	.error_remove_page = shmem_error_remove_page,
};
EXPORT_SYMBOL(shmem_aops);

static const struct file_operations shmem_file_operations = {
	.mmap		= shmem_mmap,
	.get_unmapped_area = shmem_get_unmapped_area,
#ifdef CONFIG_TMPFS
	.llseek		= shmem_file_llseek,
	.read_iter	= shmem_file_read_iter,
	.write_iter	= generic_file_write_iter,
	.fsync		= noop_fsync,
	.splice_read	= generic_file_splice_read,
	.splice_write	= iter_file_splice_write,
	.fallocate	= shmem_fallocate,
#endif
};

static const struct inode_operations shmem_inode_operations = {
	.getattr	= shmem_getattr,
	.setattr	= shmem_setattr,
#ifdef CONFIG_TMPFS_XATTR
	.listxattr	= shmem_listxattr,
	.set_acl	= simple_set_acl,
	.fileattr_get	= shmem_fileattr_get,
	.fileattr_set	= shmem_fileattr_set,
#endif
};

static const struct inode_operations shmem_dir_inode_operations = {
#ifdef CONFIG_TMPFS
	.getattr	= shmem_getattr,
	.create		= shmem_create,
	.lookup		= simple_lookup,
	.link		= shmem_link,
	.unlink		= shmem_unlink,
	.symlink	= shmem_symlink,
	.mkdir		= shmem_mkdir,
	.rmdir		= shmem_rmdir,
	.mknod		= shmem_mknod,
	.rename		= shmem_rename2,
	.tmpfile	= shmem_tmpfile,
#endif
#ifdef CONFIG_TMPFS_XATTR
	.listxattr	= shmem_listxattr,
	.fileattr_get	= shmem_fileattr_get,
	.fileattr_set	= shmem_fileattr_set,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
	.setattr	= shmem_setattr,
	.set_acl	= simple_set_acl,
#endif
};

static const struct inode_operations shmem_special_inode_operations = {
	.getattr	= shmem_getattr,
#ifdef CONFIG_TMPFS_XATTR
	.listxattr	= shmem_listxattr,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
	.setattr	= shmem_setattr,
	.set_acl	= simple_set_acl,
#endif
};

static const struct super_operations shmem_ops = {
	.alloc_inode	= shmem_alloc_inode,
	.free_inode	= shmem_free_in_core_inode,
	.destroy_inode	= shmem_destroy_inode,
#ifdef CONFIG_TMPFS
	.statfs		= shmem_statfs,
	.show_options	= shmem_show_options,
#endif
	.evict_inode	= shmem_evict_inode,
	.drop_inode	= generic_delete_inode,
	.put_super	= shmem_put_super,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	.nr_cached_objects	= shmem_unused_huge_count,
	.free_cached_objects	= shmem_unused_huge_scan,
#endif
};

static const struct vm_operations_struct shmem_vm_ops = {
	.fault		= shmem_fault,
	.map_pages	= filemap_map_pages,
#ifdef CONFIG_NUMA
	.set_policy     = shmem_set_policy,
	.get_policy     = shmem_get_policy,
#endif
};

int shmem_init_fs_context(struct fs_context *fc)
{
	struct shmem_options *ctx;

	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->mode = 0777 | S_ISVTX;
	ctx->uid = current_fsuid();
	ctx->gid = current_fsgid();

	fc->fs_private = ctx;
	fc->ops = &shmem_fs_context_ops;
	return 0;
}

static struct file_system_type shmem_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "tmpfs",
	.init_fs_context = shmem_init_fs_context,
#ifdef CONFIG_TMPFS
	.parameters	= shmem_fs_parameters,
#endif
	.kill_sb	= kill_litter_super,
	.fs_flags	= FS_USERNS_MOUNT,
};

void __init shmem_init(void)
{
	int error;

	shmem_init_inodecache();

	error = register_filesystem(&shmem_fs_type);
	if (error) {
		pr_err("Could not register tmpfs\n");
		goto out2;
	}

	shm_mnt = kern_mount(&shmem_fs_type);
	if (IS_ERR(shm_mnt)) {
		error = PTR_ERR(shm_mnt);
		pr_err("Could not kern_mount tmpfs\n");
		goto out1;
	}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
	else
		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
#endif
	return;

out1:
	unregister_filesystem(&shmem_fs_type);
out2:
	shmem_destroy_inodecache();
	shm_mnt = ERR_PTR(error);
}

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
static ssize_t shmem_enabled_show(struct kobject *kobj,
				  struct kobj_attribute *attr, char *buf)
{
	static const int values[] = {
		SHMEM_HUGE_ALWAYS,
		SHMEM_HUGE_WITHIN_SIZE,
		SHMEM_HUGE_ADVISE,
		SHMEM_HUGE_NEVER,
		SHMEM_HUGE_DENY,
		SHMEM_HUGE_FORCE,
	};
	int len = 0;
	int i;

	for (i = 0; i < ARRAY_SIZE(values); i++) {
		len += sysfs_emit_at(buf, len,
				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
				     i ? " " : "",
				     shmem_format_huge(values[i]));
	}

	len += sysfs_emit_at(buf, len, "\n");

	return len;
}

static ssize_t shmem_enabled_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	char tmp[16];
	int huge;

	if (count + 1 > sizeof(tmp))
		return -EINVAL;
	memcpy(tmp, buf, count);
	tmp[count] = '\0';
	if (count && tmp[count - 1] == '\n')
		tmp[count - 1] = '\0';

	huge = shmem_parse_huge(tmp);
	if (huge == -EINVAL)
		return -EINVAL;
	if (!has_transparent_hugepage() &&
			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
		return -EINVAL;

	shmem_huge = huge;
	if (shmem_huge > SHMEM_HUGE_DENY)
		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
	return count;
}

struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */

#else /* !CONFIG_SHMEM */

/*
 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
 *
 * This is intended for small system where the benefits of the full
 * shmem code (swap-backed and resource-limited) are outweighed by
 * their complexity. On systems without swap this code should be
 * effectively equivalent, but much lighter weight.
 */

static struct file_system_type shmem_fs_type = {
	.name		= "tmpfs",
	.init_fs_context = ramfs_init_fs_context,
	.parameters	= ramfs_fs_parameters,
	.kill_sb	= kill_litter_super,
	.fs_flags	= FS_USERNS_MOUNT,
};

void __init shmem_init(void)
{
	BUG_ON(register_filesystem(&shmem_fs_type) != 0);

	shm_mnt = kern_mount(&shmem_fs_type);
	BUG_ON(IS_ERR(shm_mnt));
}

int shmem_unuse(unsigned int type)
{
	return 0;
}

int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
	return 0;
}

void shmem_unlock_mapping(struct address_space *mapping)
{
}

#ifdef CONFIG_MMU
unsigned long shmem_get_unmapped_area(struct file *file,
				      unsigned long addr, unsigned long len,
				      unsigned long pgoff, unsigned long flags)
{
	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
}
#endif

void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);

#define shmem_vm_ops				generic_file_vm_ops
#define shmem_file_operations			ramfs_file_operations
#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
#define shmem_acct_size(flags, size)		0
#define shmem_unacct_size(flags, size)		do {} while (0)

#endif /* CONFIG_SHMEM */

/* common code */

static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
				       unsigned long flags, unsigned int i_flags)
{
	struct inode *inode;
	struct file *res;

	if (IS_ERR(mnt))
		return ERR_CAST(mnt);

	if (size < 0 || size > MAX_LFS_FILESIZE)
		return ERR_PTR(-EINVAL);

	if (shmem_acct_size(flags, size))
		return ERR_PTR(-ENOMEM);

	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
				flags);
	if (unlikely(!inode)) {
		shmem_unacct_size(flags, size);
		return ERR_PTR(-ENOSPC);
	}
	inode->i_flags |= i_flags;
	inode->i_size = size;
	clear_nlink(inode);	/* It is unlinked */
	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
	if (!IS_ERR(res))
		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
				&shmem_file_operations);
	if (IS_ERR(res))
		iput(inode);
	return res;
}

/**
 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
 * 	kernel internal.  There will be NO LSM permission checks against the
 * 	underlying inode.  So users of this interface must do LSM checks at a
 *	higher layer.  The users are the big_key and shm implementations.  LSM
 *	checks are provided at the key or shm level rather than the inode.
 * @name: name for dentry (to be seen in /proc/<pid>/maps
 * @size: size to be set for the file
 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
 */
struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
{
	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
}

/**
 * shmem_file_setup - get an unlinked file living in tmpfs
 * @name: name for dentry (to be seen in /proc/<pid>/maps
 * @size: size to be set for the file
 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
 */
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup);

/**
 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
 * @mnt: the tmpfs mount where the file will be created
 * @name: name for dentry (to be seen in /proc/<pid>/maps
 * @size: size to be set for the file
 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
 */
struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
				       loff_t size, unsigned long flags)
{
	return __shmem_file_setup(mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);

/**
 * shmem_zero_setup - setup a shared anonymous mapping
 * @vma: the vma to be mmapped is prepared by do_mmap
 */
int shmem_zero_setup(struct vm_area_struct *vma)
{
	struct file *file;
	loff_t size = vma->vm_end - vma->vm_start;

	/*
	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
	 * between XFS directory reading and selinux: since this file is only
	 * accessible to the user through its mapping, use S_PRIVATE flag to
	 * bypass file security, in the same way as shmem_kernel_file_setup().
	 */
	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
	if (IS_ERR(file))
		return PTR_ERR(file);

	if (vma->vm_file)
		fput(vma->vm_file);
	vma->vm_file = file;
	vma->vm_ops = &shmem_vm_ops;

	return 0;
}

/**
 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
 * with any new page allocations done using the specified allocation flags.
 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
 * suit tmpfs, since it may have pages in swapcache, and needs to find those
 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
 *
 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
 */
struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
					 pgoff_t index, gfp_t gfp)
{
#ifdef CONFIG_SHMEM
	struct inode *inode = mapping->host;
	struct page *page;
	int error;

	BUG_ON(!shmem_mapping(mapping));
	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
				  gfp, NULL, NULL, NULL);
	if (error)
		return ERR_PTR(error);

	unlock_page(page);
	if (PageHWPoison(page)) {
		put_page(page);
		return ERR_PTR(-EIO);
	}

	return page;
#else
	/*
	 * The tiny !SHMEM case uses ramfs without swap
	 */
	return read_cache_page_gfp(mapping, index, gfp);
#endif
}
EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
back to top