Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 62a2af802192e86b60cc64dfd458d581a064c0c7 authored by Christian Thiele on 13 April 2018, 12:16:17 UTC, committed by cran-robot on 13 April 2018, 12:16:17 UTC
version 0.7.3
1 parent 94a7e29
  • Files
  • Changes
  • 66d112c
  • /
  • R
  • /
  • oc_youden_normal.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:62a2af802192e86b60cc64dfd458d581a064c0c7
directory badge Iframe embedding
swh:1:dir:c7361bca00033344fc8109d824a9ef5745ed9e15
content badge Iframe embedding
swh:1:cnt:9004a726d5f4b00b9644cd44761de8840bcb647d
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
oc_youden_normal.R
#' Determine an optimal cutpoint for the Youden-Index assuming normal distributions
#'
#' An optimal cutpoint maximizing the Youden- or J-Index
#' (sensitivity + specificity - 1) is calculated parametrically assuming
#' normal distributions per class.
#'
#' @param data A data frame or tibble in which the columns that are given in x
#' and class can be found.
#' @param x (character) The variable name to be used for classification,
#' e.g. predictions or test values.
#' @param class (character) The variable name indicating class membership.
#' @param pos_class The value of class that indicates the positive class.
#' @param neg_class The value of class that indicates the negative class.
#' @param direction (character) Use ">=" or "<=" to select whether an x value
#' >= or <= the cutoff predicts the positive class.
#' @param ... To capture further arguments that are always passed to the method
#' function by cutpointr. The cutpointr function passes data, x, class,
#' metric_func, direction, pos_class and neg_class to the method function.
#' @examples
#' data(suicide)
#' oc_youden_normal(suicide, "dsi", "suicide",
#'   pos_class = "yes", neg_class = "no", direction = ">=")
#' cutpointr(suicide, dsi, suicide, method = oc_youden_normal)
#' @family method functions
#' @export
oc_youden_normal <- function(data, x, class, pos_class = NULL, neg_class = NULL,
                             direction, ...) {
    stopifnot(is.character(x))
    stopifnot(is.character(class))
    iv <- unlist(data[, x])
    if (any_inf(iv)) stop("Only finite values allowed in oc_youden_normal")
    cla <- unlist(data[, class])
    if (direction %in% c(">", ">=")) {
        patients <- iv[cla == pos_class]
        controls <- iv[cla == neg_class]
    } else if (direction %in% c("<", "<=")) {
        patients <- iv[cla == neg_class]
        controls <- iv[cla == pos_class]
    }
    m_h <- mean(controls)
    sd_h <- stats::sd(controls)
    m_d <- mean(patients)
    sd_d <- stats::sd(patients)
    if (sd_h == sd_d) {
        c <- (m_h+m_d)/2
    } else if (any(sd_h == 0, sd_d == 0)) {
        # if sd_h = 0 and/or sd_d = 0 the cutoff would be NaN
        c <- (m_h+m_d)/2
    } else {
        c <- ((m_d*sd_h^2 - m_h*sd_d^2) - sd_h*sd_d*(sqrt((m_h-m_d)^2 + (sd_h^2-sd_d^2) * log(sd_h^2/sd_d^2)))) /
            (sd_h^2-sd_d^2)
    }

    # Extremely high or low cutoffs can result if m_d < m_h and direction = ">="
    if (c < min(c(controls, patients))) {
        warning(paste("Cutpoint", c, "was restricted to range of independent variable"))
        c <- min(c(controls, patients))
    } else if (c > max(c(controls, patients))) {
        warning(paste("Cutpoint", c, "was restricted to range of independent variable"))
        c <- max(c(controls, patients))
    }
    return(data.frame(optimal_cutpoint = c))
}

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API