Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 62a2af802192e86b60cc64dfd458d581a064c0c7 authored by Christian Thiele on 13 April 2018, 12:16:17 UTC, committed by cran-robot on 13 April 2018, 12:16:17 UTC
version 0.7.3
1 parent 94a7e29
  • Files
  • Changes
  • 66d112c
  • /
  • R
  • /
  • predict.cutpointr.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:62a2af802192e86b60cc64dfd458d581a064c0c7
directory badge Iframe embedding
swh:1:dir:c7361bca00033344fc8109d824a9ef5745ed9e15
content badge Iframe embedding
swh:1:cnt:1c67d17a2abe198754d37e4fab640efba0193d86
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
predict.cutpointr.R
#' Predict using a cutpointr object
#'
#' Predictions are made on the \code{data.frame} in \code{newdata}
#' using either the variable name or by applying the same transformation to
#' the data as in \code{cutpointr}. The class of the output will be identical to the class
#' of the predictor.
#'
#' @param object a cutpointr object.
#' @param newdata a data.frame with a column that contains the predictor
#' variable.
#' @param cutpoint_nr if multiple optimal cutpoints were found this parameter
#' defines which one should be used for predictions. Can be a vector if
#' different cutpoint numbers are desired for different subgroups.
#' @param ... further arguments.
#' @examples
#' oc <- cutpointr(suicide, dsi, suicide)
#' ## Return in-sample predictions
#' predict(oc, newdata = data.frame(dsi = oc$data[[1]]$dsi))
#' @family main cutpointr functions
#' @export
predict.cutpointr <- function(object, newdata, cutpoint_nr = 1, ...) {
    if (!("data.frame" %in% class(newdata))) {
        stop("newdata should be a data.frame")
    }
    if (!(length(cutpoint_nr) == 1 | length(cutpoint_nr) == nrow(object))) {
        stop("Specify one cutpoint_nr or one cutpoint_nr per subgroup.")
    }
    predictor_name <- object$predictor[1]
    # The predictor may have been altered using NSE
    indep_var <- eval(parse(text = predictor_name), newdata, parent.frame())
    pos_class <- object$pos_class[1]
    neg_class <- object$neg_class[1]

    if (any(colnames(object) == "subgroup")) {
        grouping_name     <- unique(object$grouping)
        grouping_var_new  <- eval(parse(text = grouping_name), newdata, parent.frame())
        opt_cut_ind <- purrr::map_int(grouping_var_new, function(g) {
            which(object$subgroup == g)
        })
        if (length(cutpoint_nr) == 1) {
            optimal_cuts <- purrr::map_dbl(object$optimal_cutpoint, function(x) {
                x[cutpoint_nr]
            })
        } else {
            optimal_cuts <- purrr::map2(.x = 1:nrow(object),
                                        .y = cutpoint_nr,
                                        .f = function(i, nr) {
                optimal_cut <- object$optimal_cutpoint[[i]][nr]
                if (is.na(optimal_cut)) {
                    stop(paste("Cutpoint Nr.", nr, "in subgroup", i, "not found"))
                }
                return(optimal_cut)
            })
            optimal_cuts <- unlist(optimal_cuts)
        }
        optimal_cuts <- optimal_cuts[opt_cut_ind]
        if (object$direction[1] == ">=") {
            preds <- indep_var >= optimal_cuts
            preds <- ifel_pos_neg(preds, pos_class, neg_class)
        } else if (object$direction[1] == "<=") {
            preds <- indep_var <= optimal_cuts
            preds <- ifel_pos_neg(preds, pos_class, neg_class)
        }
    } else {
        optimal_cut <- object$optimal_cutpoint[[1]][cutpoint_nr]
        if (is.na(optimal_cut)) {
            stop(paste("Cutpoint Nr.", cutpoint_nr, "not found"))
        }
        if (object$direction[1] == ">=") {
            preds <- indep_var >= optimal_cut
            preds <- ifel_pos_neg(preds, pos_class, neg_class)
        } else if (object$direction[1] == "<=") {
            preds <- indep_var <= optimal_cut
            preds <- ifel_pos_neg(preds, pos_class, neg_class)
        }
    }
    return(preds)
}
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API