Revision 63cae12bce9861cec309798d34701cf3da20bc71 authored by Peter Zijlstra on 09 December 2016, 13:59:00 UTC, committed by Ingo Molnar on 14 January 2017, 09:56:10 UTC
There is problem with installing an event in a task that is 'stuck' on
an offline CPU.

Blocked tasks are not dis-assosciated from offlined CPUs, after all, a
blocked task doesn't run and doesn't require a CPU etc.. Only on
wakeup do we ammend the situation and place the task on a available
CPU.

If we hit such a task with perf_install_in_context() we'll loop until
either that task wakes up or the CPU comes back online, if the task
waking depends on the event being installed, we're stuck.

While looking into this issue, I also spotted another problem, if we
hit a task with perf_install_in_context() that is in the middle of
being migrated, that is we observe the old CPU before sending the IPI,
but run the IPI (on the old CPU) while the task is already running on
the new CPU, things also go sideways.

Rework things to rely on task_curr() -- outside of rq->lock -- which
is rather tricky. Imagine the following scenario where we're trying to
install the first event into our task 't':

CPU0            CPU1            CPU2

                (current == t)

t->perf_event_ctxp[] = ctx;
smp_mb();
cpu = task_cpu(t);

                switch(t, n);
                                migrate(t, 2);
                                switch(p, t);

                                ctx = t->perf_event_ctxp[]; // must not be NULL

smp_function_call(cpu, ..);

                generic_exec_single()
                  func();
                    spin_lock(ctx->lock);
                    if (task_curr(t)) // false

                    add_event_to_ctx();
                    spin_unlock(ctx->lock);

                                perf_event_context_sched_in();
                                  spin_lock(ctx->lock);
                                  // sees event

So its CPU0's store of t->perf_event_ctxp[] that must not go 'missing'.
Because if CPU2's load of that variable were to observe NULL, it would
not try to schedule the ctx and we'd have a task running without its
counter, which would be 'bad'.

As long as we observe !NULL, we'll acquire ctx->lock. If we acquire it
first and not see the event yet, then CPU0 must observe task_curr()
and retry. If the install happens first, then we must see the event on
sched-in and all is well.

I think we can translate the first part (until the 'must not be NULL')
of the scenario to a litmus test like:

  C C-peterz

  {
  }

  P0(int *x, int *y)
  {
          int r1;

          WRITE_ONCE(*x, 1);
          smp_mb();
          r1 = READ_ONCE(*y);
  }

  P1(int *y, int *z)
  {
          WRITE_ONCE(*y, 1);
          smp_store_release(z, 1);
  }

  P2(int *x, int *z)
  {
          int r1;
          int r2;

          r1 = smp_load_acquire(z);
	  smp_mb();
          r2 = READ_ONCE(*x);
  }

  exists
  (0:r1=0 /\ 2:r1=1 /\ 2:r2=0)

Where:
  x is perf_event_ctxp[],
  y is our tasks's CPU, and
  z is our task being placed on the rq of CPU2.

The P0 smp_mb() is the one added by this patch, ordering the store to
perf_event_ctxp[] from find_get_context() and the load of task_cpu()
in task_function_call().

The smp_store_release/smp_load_acquire model the RCpc locking of the
rq->lock and the smp_mb() of P2 is the context switch switching from
whatever CPU2 was running to our task 't'.

This litmus test evaluates into:

  Test C-peterz Allowed
  States 7
  0:r1=0; 2:r1=0; 2:r2=0;
  0:r1=0; 2:r1=0; 2:r2=1;
  0:r1=0; 2:r1=1; 2:r2=1;
  0:r1=1; 2:r1=0; 2:r2=0;
  0:r1=1; 2:r1=0; 2:r2=1;
  0:r1=1; 2:r1=1; 2:r2=0;
  0:r1=1; 2:r1=1; 2:r2=1;
  No
  Witnesses
  Positive: 0 Negative: 7
  Condition exists (0:r1=0 /\ 2:r1=1 /\ 2:r2=0)
  Observation C-peterz Never 0 7
  Hash=e427f41d9146b2a5445101d3e2fcaa34

And the strong and weak model agree.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: jeremy.linton@arm.com
Link: http://lkml.kernel.org/r/20161209135900.GU3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1 parent ad5013d
Raw File
slob.c
/*
 * SLOB Allocator: Simple List Of Blocks
 *
 * Matt Mackall <mpm@selenic.com> 12/30/03
 *
 * NUMA support by Paul Mundt, 2007.
 *
 * How SLOB works:
 *
 * The core of SLOB is a traditional K&R style heap allocator, with
 * support for returning aligned objects. The granularity of this
 * allocator is as little as 2 bytes, however typically most architectures
 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 *
 * The slob heap is a set of linked list of pages from alloc_pages(),
 * and within each page, there is a singly-linked list of free blocks
 * (slob_t). The heap is grown on demand. To reduce fragmentation,
 * heap pages are segregated into three lists, with objects less than
 * 256 bytes, objects less than 1024 bytes, and all other objects.
 *
 * Allocation from heap involves first searching for a page with
 * sufficient free blocks (using a next-fit-like approach) followed by
 * a first-fit scan of the page. Deallocation inserts objects back
 * into the free list in address order, so this is effectively an
 * address-ordered first fit.
 *
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 * alloc_pages() directly, allocating compound pages so the page order
 * does not have to be separately tracked.
 * These objects are detected in kfree() because PageSlab()
 * is false for them.
 *
 * SLAB is emulated on top of SLOB by simply calling constructors and
 * destructors for every SLAB allocation. Objects are returned with the
 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 * case the low-level allocator will fragment blocks to create the proper
 * alignment. Again, objects of page-size or greater are allocated by
 * calling alloc_pages(). As SLAB objects know their size, no separate
 * size bookkeeping is necessary and there is essentially no allocation
 * space overhead, and compound pages aren't needed for multi-page
 * allocations.
 *
 * NUMA support in SLOB is fairly simplistic, pushing most of the real
 * logic down to the page allocator, and simply doing the node accounting
 * on the upper levels. In the event that a node id is explicitly
 * provided, __alloc_pages_node() with the specified node id is used
 * instead. The common case (or when the node id isn't explicitly provided)
 * will default to the current node, as per numa_node_id().
 *
 * Node aware pages are still inserted in to the global freelist, and
 * these are scanned for by matching against the node id encoded in the
 * page flags. As a result, block allocations that can be satisfied from
 * the freelist will only be done so on pages residing on the same node,
 * in order to prevent random node placement.
 */

#include <linux/kernel.h>
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>

#include <trace/events/kmem.h>

#include <linux/atomic.h>

#include "slab.h"
/*
 * slob_block has a field 'units', which indicates size of block if +ve,
 * or offset of next block if -ve (in SLOB_UNITs).
 *
 * Free blocks of size 1 unit simply contain the offset of the next block.
 * Those with larger size contain their size in the first SLOB_UNIT of
 * memory, and the offset of the next free block in the second SLOB_UNIT.
 */
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif

struct slob_block {
	slobidx_t units;
};
typedef struct slob_block slob_t;

/*
 * All partially free slob pages go on these lists.
 */
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);

/*
 * slob_page_free: true for pages on free_slob_pages list.
 */
static inline int slob_page_free(struct page *sp)
{
	return PageSlobFree(sp);
}

static void set_slob_page_free(struct page *sp, struct list_head *list)
{
	list_add(&sp->lru, list);
	__SetPageSlobFree(sp);
}

static inline void clear_slob_page_free(struct page *sp)
{
	list_del(&sp->lru);
	__ClearPageSlobFree(sp);
}

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)

/*
 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
 * the block using call_rcu.
 */
struct slob_rcu {
	struct rcu_head head;
	int size;
};

/*
 * slob_lock protects all slob allocator structures.
 */
static DEFINE_SPINLOCK(slob_lock);

/*
 * Encode the given size and next info into a free slob block s.
 */
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t offset = next - base;

	if (size > 1) {
		s[0].units = size;
		s[1].units = offset;
	} else
		s[0].units = -offset;
}

/*
 * Return the size of a slob block.
 */
static slobidx_t slob_units(slob_t *s)
{
	if (s->units > 0)
		return s->units;
	return 1;
}

/*
 * Return the next free slob block pointer after this one.
 */
static slob_t *slob_next(slob_t *s)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t next;

	if (s[0].units < 0)
		next = -s[0].units;
	else
		next = s[1].units;
	return base+next;
}

/*
 * Returns true if s is the last free block in its page.
 */
static int slob_last(slob_t *s)
{
	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}

static void *slob_new_pages(gfp_t gfp, int order, int node)
{
	void *page;

#ifdef CONFIG_NUMA
	if (node != NUMA_NO_NODE)
		page = __alloc_pages_node(node, gfp, order);
	else
#endif
		page = alloc_pages(gfp, order);

	if (!page)
		return NULL;

	return page_address(page);
}

static void slob_free_pages(void *b, int order)
{
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += 1 << order;
	free_pages((unsigned long)b, order);
}

/*
 * Allocate a slob block within a given slob_page sp.
 */
static void *slob_page_alloc(struct page *sp, size_t size, int align)
{
	slob_t *prev, *cur, *aligned = NULL;
	int delta = 0, units = SLOB_UNITS(size);

	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
		slobidx_t avail = slob_units(cur);

		if (align) {
			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
			delta = aligned - cur;
		}
		if (avail >= units + delta) { /* room enough? */
			slob_t *next;

			if (delta) { /* need to fragment head to align? */
				next = slob_next(cur);
				set_slob(aligned, avail - delta, next);
				set_slob(cur, delta, aligned);
				prev = cur;
				cur = aligned;
				avail = slob_units(cur);
			}

			next = slob_next(cur);
			if (avail == units) { /* exact fit? unlink. */
				if (prev)
					set_slob(prev, slob_units(prev), next);
				else
					sp->freelist = next;
			} else { /* fragment */
				if (prev)
					set_slob(prev, slob_units(prev), cur + units);
				else
					sp->freelist = cur + units;
				set_slob(cur + units, avail - units, next);
			}

			sp->units -= units;
			if (!sp->units)
				clear_slob_page_free(sp);
			return cur;
		}
		if (slob_last(cur))
			return NULL;
	}
}

/*
 * slob_alloc: entry point into the slob allocator.
 */
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
	struct page *sp;
	struct list_head *prev;
	struct list_head *slob_list;
	slob_t *b = NULL;
	unsigned long flags;

	if (size < SLOB_BREAK1)
		slob_list = &free_slob_small;
	else if (size < SLOB_BREAK2)
		slob_list = &free_slob_medium;
	else
		slob_list = &free_slob_large;

	spin_lock_irqsave(&slob_lock, flags);
	/* Iterate through each partially free page, try to find room */
	list_for_each_entry(sp, slob_list, lru) {
#ifdef CONFIG_NUMA
		/*
		 * If there's a node specification, search for a partial
		 * page with a matching node id in the freelist.
		 */
		if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
			continue;
#endif
		/* Enough room on this page? */
		if (sp->units < SLOB_UNITS(size))
			continue;

		/* Attempt to alloc */
		prev = sp->lru.prev;
		b = slob_page_alloc(sp, size, align);
		if (!b)
			continue;

		/* Improve fragment distribution and reduce our average
		 * search time by starting our next search here. (see
		 * Knuth vol 1, sec 2.5, pg 449) */
		if (prev != slob_list->prev &&
				slob_list->next != prev->next)
			list_move_tail(slob_list, prev->next);
		break;
	}
	spin_unlock_irqrestore(&slob_lock, flags);

	/* Not enough space: must allocate a new page */
	if (!b) {
		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
		if (!b)
			return NULL;
		sp = virt_to_page(b);
		__SetPageSlab(sp);

		spin_lock_irqsave(&slob_lock, flags);
		sp->units = SLOB_UNITS(PAGE_SIZE);
		sp->freelist = b;
		INIT_LIST_HEAD(&sp->lru);
		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
		set_slob_page_free(sp, slob_list);
		b = slob_page_alloc(sp, size, align);
		BUG_ON(!b);
		spin_unlock_irqrestore(&slob_lock, flags);
	}
	if (unlikely((gfp & __GFP_ZERO) && b))
		memset(b, 0, size);
	return b;
}

/*
 * slob_free: entry point into the slob allocator.
 */
static void slob_free(void *block, int size)
{
	struct page *sp;
	slob_t *prev, *next, *b = (slob_t *)block;
	slobidx_t units;
	unsigned long flags;
	struct list_head *slob_list;

	if (unlikely(ZERO_OR_NULL_PTR(block)))
		return;
	BUG_ON(!size);

	sp = virt_to_page(block);
	units = SLOB_UNITS(size);

	spin_lock_irqsave(&slob_lock, flags);

	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
		/* Go directly to page allocator. Do not pass slob allocator */
		if (slob_page_free(sp))
			clear_slob_page_free(sp);
		spin_unlock_irqrestore(&slob_lock, flags);
		__ClearPageSlab(sp);
		page_mapcount_reset(sp);
		slob_free_pages(b, 0);
		return;
	}

	if (!slob_page_free(sp)) {
		/* This slob page is about to become partially free. Easy! */
		sp->units = units;
		sp->freelist = b;
		set_slob(b, units,
			(void *)((unsigned long)(b +
					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
		if (size < SLOB_BREAK1)
			slob_list = &free_slob_small;
		else if (size < SLOB_BREAK2)
			slob_list = &free_slob_medium;
		else
			slob_list = &free_slob_large;
		set_slob_page_free(sp, slob_list);
		goto out;
	}

	/*
	 * Otherwise the page is already partially free, so find reinsertion
	 * point.
	 */
	sp->units += units;

	if (b < (slob_t *)sp->freelist) {
		if (b + units == sp->freelist) {
			units += slob_units(sp->freelist);
			sp->freelist = slob_next(sp->freelist);
		}
		set_slob(b, units, sp->freelist);
		sp->freelist = b;
	} else {
		prev = sp->freelist;
		next = slob_next(prev);
		while (b > next) {
			prev = next;
			next = slob_next(prev);
		}

		if (!slob_last(prev) && b + units == next) {
			units += slob_units(next);
			set_slob(b, units, slob_next(next));
		} else
			set_slob(b, units, next);

		if (prev + slob_units(prev) == b) {
			units = slob_units(b) + slob_units(prev);
			set_slob(prev, units, slob_next(b));
		} else
			set_slob(prev, slob_units(prev), b);
	}
out:
	spin_unlock_irqrestore(&slob_lock, flags);
}

/*
 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 */

static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
	unsigned int *m;
	int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
	void *ret;

	gfp &= gfp_allowed_mask;

	lockdep_trace_alloc(gfp);

	if (size < PAGE_SIZE - align) {
		if (!size)
			return ZERO_SIZE_PTR;

		m = slob_alloc(size + align, gfp, align, node);

		if (!m)
			return NULL;
		*m = size;
		ret = (void *)m + align;

		trace_kmalloc_node(caller, ret,
				   size, size + align, gfp, node);
	} else {
		unsigned int order = get_order(size);

		if (likely(order))
			gfp |= __GFP_COMP;
		ret = slob_new_pages(gfp, order, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << order, gfp, node);
	}

	kmemleak_alloc(ret, size, 1, gfp);
	return ret;
}

void *__kmalloc(size_t size, gfp_t gfp)
{
	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);

void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}

#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
					int node, unsigned long caller)
{
	return __do_kmalloc_node(size, gfp, node, caller);
}
#endif

void kfree(const void *block)
{
	struct page *sp;

	trace_kfree(_RET_IP_, block);

	if (unlikely(ZERO_OR_NULL_PTR(block)))
		return;
	kmemleak_free(block);

	sp = virt_to_page(block);
	if (PageSlab(sp)) {
		int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
		unsigned int *m = (unsigned int *)(block - align);
		slob_free(m, *m + align);
	} else
		__free_pages(sp, compound_order(sp));
}
EXPORT_SYMBOL(kfree);

/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
{
	struct page *sp;
	int align;
	unsigned int *m;

	BUG_ON(!block);
	if (unlikely(block == ZERO_SIZE_PTR))
		return 0;

	sp = virt_to_page(block);
	if (unlikely(!PageSlab(sp)))
		return PAGE_SIZE << compound_order(sp);

	align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
	m = (unsigned int *)(block - align);
	return SLOB_UNITS(*m) * SLOB_UNIT;
}
EXPORT_SYMBOL(ksize);

int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
{
	if (flags & SLAB_DESTROY_BY_RCU) {
		/* leave room for rcu footer at the end of object */
		c->size += sizeof(struct slob_rcu);
	}
	c->flags = flags;
	return 0;
}

static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
	void *b;

	flags &= gfp_allowed_mask;

	lockdep_trace_alloc(flags);

	if (c->size < PAGE_SIZE) {
		b = slob_alloc(c->size, flags, c->align, node);
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
					    SLOB_UNITS(c->size) * SLOB_UNIT,
					    flags, node);
	} else {
		b = slob_new_pages(flags, get_order(c->size), node);
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
					    PAGE_SIZE << get_order(c->size),
					    flags, node);
	}

	if (b && c->ctor)
		c->ctor(b);

	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
	return b;
}

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
	return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);

void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
	return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

static void __kmem_cache_free(void *b, int size)
{
	if (size < PAGE_SIZE)
		slob_free(b, size);
	else
		slob_free_pages(b, get_order(size));
}

static void kmem_rcu_free(struct rcu_head *head)
{
	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));

	__kmem_cache_free(b, slob_rcu->size);
}

void kmem_cache_free(struct kmem_cache *c, void *b)
{
	kmemleak_free_recursive(b, c->flags);
	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
		struct slob_rcu *slob_rcu;
		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
		slob_rcu->size = c->size;
		call_rcu(&slob_rcu->head, kmem_rcu_free);
	} else {
		__kmem_cache_free(b, c->size);
	}

	trace_kmem_cache_free(_RET_IP_, b);
}
EXPORT_SYMBOL(kmem_cache_free);

void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
	__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
								void **p)
{
	return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

int __kmem_cache_shutdown(struct kmem_cache *c)
{
	/* No way to check for remaining objects */
	return 0;
}

void __kmem_cache_release(struct kmem_cache *c)
{
}

int __kmem_cache_shrink(struct kmem_cache *d)
{
	return 0;
}

struct kmem_cache kmem_cache_boot = {
	.name = "kmem_cache",
	.size = sizeof(struct kmem_cache),
	.flags = SLAB_PANIC,
	.align = ARCH_KMALLOC_MINALIGN,
};

void __init kmem_cache_init(void)
{
	kmem_cache = &kmem_cache_boot;
	slab_state = UP;
}

void __init kmem_cache_init_late(void)
{
	slab_state = FULL;
}
back to top