https://github.com/koffie/mdmagma
Revision 65a8ca6dd8d54862cd20257523e0054fe908c737 authored by Maarten Derickx on 23 August 2024, 15:45:41 UTC, committed by Maarten Derickx on 23 August 2024, 15:45:41 UTC
1 parent 3428603
Tip revision: 65a8ca6dd8d54862cd20257523e0054fe908c737 authored by Maarten Derickx on 23 August 2024, 15:45:41 UTC
Oneliner for strange characters in parallel
Oneliner for strange characters in parallel
Tip revision: 65a8ca6
elliptic_curve_chabauty.m
// The functions here make it easy to combine two cover descent on hyper elliptic curves
// together with elliptic curve Chabauty.
QQ := Rationals();
// Innocent helper function
function Zip(a, b)
//similar to pythons zip function
assert #a eq #b;
n := #a;
return [<a[i],b[i]> : i in [1..n]];
end function;
// Magma's TwoCoverDescent function returns a function AtoHk that maps elements from
// some algebra A to the fake 2-Selmer set Hk. This function returns the inverse of this
// map. Elements in the algebra A can be used to construct the two-cover of the
// corresponding element in the fake 2-Selmer set.
function createHktoA(AtoHk, expvecs, factorbase)
A := Domain(AtoHk);
A2 := Parent(factorbase[1]);
phi := hom< A2 -> A | A.1 >;
Hk := Domain(expvecs);
HktoA := map< Hk -> A | h :-> phi(&*[ef[2]^ef[1] : ef in Zip(Eltseq(expvecs(h)),factorbase)])>;
return HktoA;
end function;
// This function carries out the elliptic curve chabauty algorithm explained in Section
// 4.2 of the paper. It is inspired by the example shown in:
// https://magma.maths.usyd.edu.au/magma/handbook/text/1566#18074
// If C is a hyper elliptic curve given by y^2=f(x) then g should be a factor of degree
// 3 or 4 of f. The factor g is allowed to be defined over a field extension.
// The element hk should be an element of the fake 2 selmer group. And corresponds to
// a two cover D -> C . D will map to the genus 1 curve gamma*y^2=g(x) for some
// twisting factor gamma. This function applies elliptic curve chabauty to find all
// points on C(Q) that come from a point on D(Q). The return value is a 4 tuple:
//
// (success, gamma, points, message)
//
// - success: a boolean that when true guarantees that all points on C(Q) coming from
// D(Q) are contained in the set of points output by this function
// - gamma: is the twisting factor corresponding to g and hk ensuring that D has a map to
// gamma*y^2=g(x)
// - points: a set of points on C
// - message: an message that indicates why we failed to do elliptic curve chabauty in
// case of failure
function EllipticChabauty(C, g, hk, HktoA : Bound:= 100)
// Basic setup is as follows
assert IsMonic(g);
assert BaseRing(C) eq QQ;
assert Degree(g) in [3,4];
success := true;
points := {@ @};
P1:=ProjectiveSpace(QQ,1);
CtoP1 := map< C -> P1 | [C.1,C.3] >;
K := BaseRing(g);
A := Codomain(HktoA);
f := ChangeRing(Modulus(A), QQ);
L := quo< Parent(g) | g>;
assert Evaluate(f, L.1) eq 0;
AtoL := hom< A -> L | L.1>;
// For some gamma, we have that a 2-cover hk covers the genus 1 curve E:y^2=gamma * g.
// The following obtains this gamma.
gamma := Norm(AtoL(HktoA(hk)));
for p in PrimeDivisors(Numerator(Norm(gamma))) do
while IsIntegral(gamma/p^2) do
gamma := gamma/p^2;
end while;
end for;
print "gamma", gamma;
gamma_g := <gamma,g>;
// the promised elliptic curve above
E := HyperellipticCurve(gamma*g);
// However, we need it as an EllipticCurve object, so we do the following
EtoP1:=map<E->P1|[E.1,E.3]>;
iselliptic, E1raw, EtoE1raw, E1rawtoE := IsEllipticCurve(E);
// If magma didn't find an elliptic curve model, we manually search for a rational
// point to function as the point at infinity
if not iselliptic then
print "finding points";
time Epoints := Points(E : Bound:=Bound);
// If we can't find a point, we report failure. Theoretically we could still try
// to prove that E is a pointless genus 1 curve. However this will be hard since
// the two descent we did earlier implies that E is coverd by an everywhere
// locally solvable curve. And hence there are no local obstructions.
if #Epoints eq 0 then
success := false;
return success, gamma_g, points, "point search failed";
end if;
iselliptic := true;
P0 := Setseq(Epoints)[1];
E1raw,EtoE1raw:=EllipticCurve(E,P0);
E1rawtoE := Inverse(EtoE1raw);
end if;
// Just thing of the following E1 as E but with a nicer model
E1 := MinimalModel(E1raw);
print "Elliptic curve", E1;
// We need to compute the MW group of the elliptic curve. Return if that fails.
time MW1, MW1toE1set, flag1, flag2 := MordellWeilGroup(E1);
if not (flag1 and flag2) then;
r := Degree(K);
return success, gamma, points, <"mw failed",Invariants(MW1), r>;
end if;
// Some functions to make certain objects more explicit
MW1toE1 := map<MW1 -> E1 | x :-> MW1toE1set(x)>;
E1toE1raw := Isomorphism(E1,E1raw);
E1toE := E1toE1raw*E1rawtoE;
E1toP1 := Expand(E1toE1raw*E1rawtoE*EtoP1);
// The Chabauty rank condition for elliptic curve Chabauty to work
if TorsionFreeRank(MW1) ge Degree(K) then
success := false;
return success, gamma_g, points, <"rank to large",TorsionFreeRank(MW1),Degree(K)>;
end if;
// If we got here, then we can do elliptic curve Chabauty
print "starting chabauty";
pointset, R := Chabauty(MW1toE1, E1toP1);
print R, #pointset;
// At this point the strategy is successful, so we can determine all points on the twist
for t in pointset do
P := E1toE(MW1toE1(t));
xP := EtoP1(P);
xP := P1(QQ) ! xP;
new_points := RationalPoints( xP@@CtoP1 );
points := points join new_points;
end for;
return success, gamma_g, points, "found all points";
end function;
Computing file changes ...