Revision 65d5762485dfdc3d57f8463ba1852d6526019c70 authored by Jameson Nash on 20 April 2017, 18:42:56 UTC, committed by Jameson Nash on 22 April 2017, 18:58:09 UTC
previously we couldn't reliably tell the difference between a failure to context switch
and an explicitly scheduled error

in the former case, we often need to undo some prior action
by moving the code for the later into Julia,
we can reliably run the necessary undo action when required

fix #21442
1 parent 45092ff
Raw File
jitlayers.cpp
// This file is a part of Julia. License is MIT: http://julialang.org/license

#include "llvm-version.h"
#include "platform.h"
#include "options.h"
#include <iostream>
#include <sstream>

// analysis passes
#include <llvm/Analysis/Passes.h>
#if JL_LLVM_VERSION >= 30800
#include <llvm/Analysis/BasicAliasAnalysis.h>
#include <llvm/Analysis/TypeBasedAliasAnalysis.h>
#endif
#if JL_LLVM_VERSION >= 30700
#include <llvm/Analysis/TargetTransformInfo.h>
#include <llvm/Analysis/TargetLibraryInfo.h>
#endif
#if JL_LLVM_VERSION >= 30500
#include <llvm/IR/Verifier.h>
#else
#include <llvm/Analysis/Verifier.h>
#endif
#if defined(USE_POLLY)
#include <polly/RegisterPasses.h>
#include <polly/LinkAllPasses.h>
#include <polly/CodeGen/CodegenCleanup.h>
#endif

#include <llvm/Transforms/IPO.h>
#include <llvm/Transforms/Scalar.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Transforms/Instrumentation.h>
#include <llvm/Transforms/Vectorize.h>
#if JL_LLVM_VERSION >= 30900
#include <llvm/Transforms/Scalar/GVN.h>
#endif
#if JL_LLVM_VERSION >= 40000
#include <llvm/Transforms/IPO/AlwaysInliner.h>
#endif

namespace llvm {
    extern Pass *createLowerSimdLoopPass();
}

#if JL_LLVM_VERSION >= 40000
#  include <llvm/Bitcode/BitcodeWriter.h>
#else
#  include <llvm/Bitcode/ReaderWriter.h>
#endif
#if JL_LLVM_VERSION >= 30500
#include <llvm/Bitcode/BitcodeWriterPass.h>
#endif

#include <llvm/Transforms/Utils/Cloning.h>
#include <llvm/ExecutionEngine/JITEventListener.h>

// target support
#include <llvm/ADT/Triple.h>
#include <llvm/Support/TargetRegistry.h>
#if JL_LLVM_VERSION < 30700
#include <llvm/Target/TargetLibraryInfo.h>
#endif
#include <llvm/IR/DataLayout.h>
#include <llvm/Support/DynamicLibrary.h>


#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/FormattedStream.h>
#include <llvm/ADT/StringMap.h>
#include <llvm/ADT/StringSet.h>
#include <llvm/ADT/SmallSet.h>
#include "fix_llvm_assert.h"

using namespace llvm;

#include "julia.h"
#include "julia_internal.h"
#include "jitlayers.h"
#ifdef USE_MCJIT
RTDyldMemoryManager* createRTDyldMemoryManager(void);
#endif

static Type *T_void;
static IntegerType *T_uint32;
static IntegerType *T_uint64;
static IntegerType *T_size;
static Type *T_psize;
static Type *T_pvoidfunc;
static Type *T_pjlvalue;
void jl_init_jit(Type *T_pjlvalue_)
{
    T_void = Type::getVoidTy(jl_LLVMContext);
    T_uint32 = Type::getInt32Ty(jl_LLVMContext);
    T_uint64 = Type::getInt64Ty(jl_LLVMContext);
    if (sizeof(size_t) == 8)
        T_size = T_uint64;
    else
        T_size = T_uint32;
    T_psize = PointerType::get(T_size, 0);
    T_pvoidfunc = FunctionType::get(T_void, /*isVarArg*/false)->getPointerTo();
    T_pjlvalue = T_pjlvalue_;
}

// Except for parts of this file which were copied from LLVM, under the UIUC license (marked below).

// this defines the set of optimization passes defined for Julia at various optimization levels
#if JL_LLVM_VERSION >= 30700
void addOptimizationPasses(legacy::PassManager *PM)
#else
void addOptimizationPasses(PassManager *PM)
#endif
{
    PM->add(createLowerGCFramePass());
#ifdef JL_DEBUG_BUILD
    PM->add(createVerifierPass());
#endif

#if defined(JL_ASAN_ENABLED)
#   if JL_LLVM_VERSION >= 30700 && JL_LLVM_VERSION < 30800
    // LLVM 3.7 BUG: ASAN pass doesn't properly initialize its dependencies
    initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
#   endif
    PM->add(createAddressSanitizerFunctionPass());
#endif
#if defined(JL_MSAN_ENABLED)
    PM->add(llvm::createMemorySanitizerPass(true));
#endif
    if (jl_options.opt_level == 0) {
        PM->add(createCFGSimplificationPass()); // Clean up disgusting code
        PM->add(createMemCpyOptPass()); // Remove memcpy / form memset
        PM->add(createLowerPTLSPass(imaging_mode));
#if JL_LLVM_VERSION >= 40000
        PM->add(createAlwaysInlinerLegacyPass()); // Respect always_inline
#else
        PM->add(createAlwaysInlinerPass()); // Respect always_inline
#endif
        return;
    }
#if JL_LLVM_VERSION >= 30700
    PM->add(createTargetTransformInfoWrapperPass(jl_TargetMachine->getTargetIRAnalysis()));
#else
    jl_TargetMachine->addAnalysisPasses(*PM);
#endif
#if JL_LLVM_VERSION >= 30800
    PM->add(createTypeBasedAAWrapperPass());
#else
    PM->add(createTypeBasedAliasAnalysisPass());
#endif
    if (jl_options.opt_level >= 3) {
#if JL_LLVM_VERSION >= 30800
        PM->add(createBasicAAWrapperPass());
#else
        PM->add(createBasicAliasAnalysisPass());
#endif
    }
    // list of passes from vmkit
    PM->add(createCFGSimplificationPass()); // Clean up disgusting code
    PM->add(createPromoteMemoryToRegisterPass()); // Kill useless allocas

    // hopefully these functions (from llvmcall) don't try to interact with the Julia runtime
    // or have anything that might corrupt the createLowerPTLSPass pass
#if JL_LLVM_VERSION >= 40000
    PM->add(createAlwaysInlinerLegacyPass()); // Respect always_inline
#else
    PM->add(createAlwaysInlinerPass()); // Respect always_inline
#endif

#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass()); // Cleanup for scalarrepl.
#endif
    // Let the InstCombine pass remove the unnecessary load of
    // safepoint address first
    PM->add(createLowerPTLSPass(imaging_mode));
    PM->add(createSROAPass());                 // Break up aggregate allocas
#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass()); // Cleanup for scalarrepl.
#endif
    PM->add(createJumpThreadingPass());        // Thread jumps.
    // NOTE: CFG simp passes after this point seem to hurt native codegen.
    // See issue #6112. Should be re-evaluated when we switch to MCJIT.
    //PM->add(createCFGSimplificationPass());    // Merge & remove BBs
#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass()); // Combine silly seq's
#endif

    //PM->add(createCFGSimplificationPass());    // Merge & remove BBs
    PM->add(createReassociatePass());          // Reassociate expressions

    // this has the potential to make some things a bit slower
    //PM->add(createBBVectorizePass());

    PM->add(createEarlyCSEPass()); //// ****

    PM->add(createLoopIdiomPass()); //// ****
    PM->add(createLoopRotatePass());           // Rotate loops.
#ifdef USE_POLLY
    // LCSSA (which has already run at this point due to the dependencies of the
    // above passes) introduces redundant phis that hinder Polly. Therefore we
    // run InstCombine here to remove them.
    PM->add(createInstructionCombiningPass());
    PM->add(polly::createCodePreparationPass());
    polly::registerPollyPasses(*PM);
    PM->add(polly::createCodegenCleanupPass());
#endif
    // LoopRotate strips metadata from terminator, so run LowerSIMD afterwards
    PM->add(createLowerSimdLoopPass());        // Annotate loop marked with "simdloop" as LLVM parallel loop
    PM->add(createLICMPass());                 // Hoist loop invariants
    PM->add(createLoopUnswitchPass());         // Unswitch loops.
    // Subsequent passes not stripping metadata from terminator
#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass());
#endif
    PM->add(createIndVarSimplifyPass());       // Canonicalize indvars
    PM->add(createLoopDeletionPass());         // Delete dead loops
#if JL_LLVM_VERSION >= 30500
    PM->add(createSimpleLoopUnrollPass());     // Unroll small loops
#else
    PM->add(createLoopUnrollPass());           // Unroll small loops
#endif
#if JL_LLVM_VERSION < 30500 && !defined(INSTCOMBINE_BUG)
    PM->add(createLoopVectorizePass());        // Vectorize loops
#endif
    //PM->add(createLoopStrengthReducePass());   // (jwb added)

#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass()); // Clean up after the unroller
#endif
    PM->add(createGVNPass());                  // Remove redundancies
    PM->add(createMemCpyOptPass());            // Remove memcpy / form memset
    PM->add(createSCCPPass());                 // Constant prop with SCCP

    // Run instcombine after redundancy elimination to exploit opportunities
    // opened up by them.
    PM->add(createSinkingPass()); ////////////// ****
    PM->add(createInstructionSimplifierPass());///////// ****
#ifndef INSTCOMBINE_BUG
    PM->add(createInstructionCombiningPass());
#endif
    PM->add(createJumpThreadingPass());         // Thread jumps
    PM->add(createDeadStoreEliminationPass());  // Delete dead stores

    // see if all of the constant folding has exposed more loops
    // to simplification and deletion
    // this helps significantly with cleaning up iteration
    PM->add(createCFGSimplificationPass());     // Merge & remove BBs
    PM->add(createLoopIdiomPass());
    PM->add(createLoopDeletionPass());          // Delete dead loops
    PM->add(createJumpThreadingPass());         // Thread jumps

#if JL_LLVM_VERSION >= 30500
    if (jl_options.opt_level >= 3) {
        PM->add(createSLPVectorizerPass());     // Vectorize straight-line code
    }
#endif

    PM->add(createAggressiveDCEPass());         // Delete dead instructions
#if JL_LLVM_VERSION >= 30500
    if (jl_options.opt_level >= 3)
        PM->add(createInstructionCombiningPass());   // Clean up after SLP loop vectorizer
    PM->add(createLoopVectorizePass());         // Vectorize loops
    PM->add(createInstructionCombiningPass());  // Clean up after loop vectorizer
#endif
}

#ifdef USE_ORCJIT

#if JL_LLVM_VERSION < 30800
void notifyObjectLoaded(RTDyldMemoryManager *memmgr,
                        llvm::orc::ObjectLinkingLayerBase::ObjSetHandleT H);
#endif

// ------------------------ TEMPORARILY COPIED FROM LLVM -----------------
// This must be kept in sync with gdb/gdb/jit.h .
extern "C" {

  typedef enum {
    JIT_NOACTION = 0,
    JIT_REGISTER_FN,
    JIT_UNREGISTER_FN
  } jit_actions_t;

  struct jit_code_entry {
    struct jit_code_entry *next_entry;
    struct jit_code_entry *prev_entry;
    const char *symfile_addr;
    uint64_t symfile_size;
  };

  struct jit_descriptor {
    uint32_t version;
    // This should be jit_actions_t, but we want to be specific about the
    // bit-width.
    uint32_t action_flag;
    struct jit_code_entry *relevant_entry;
    struct jit_code_entry *first_entry;
  };

  // We put information about the JITed function in this global, which the
  // debugger reads.  Make sure to specify the version statically, because the
  // debugger checks the version before we can set it during runtime.
  extern struct jit_descriptor __jit_debug_descriptor;

  LLVM_ATTRIBUTE_NOINLINE extern void __jit_debug_register_code();
}

namespace {

// Use a local variable to hold the addresses to avoid generating a PLT
// on the function call.
// It messes up the GDB lookup logic with dynamically linked LLVM.
// (Ref https://sourceware.org/bugzilla/show_bug.cgi?id=20633)
// Use `volatile` to make sure the call always loads this slot.
void (*volatile jit_debug_register_code)() = __jit_debug_register_code;

using namespace llvm;
using namespace llvm::object;
using namespace llvm::orc;

/// Do the registration.
void NotifyDebugger(jit_code_entry *JITCodeEntry)
{
    __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;

    // Insert this entry at the head of the list.
    JITCodeEntry->prev_entry = nullptr;
    jit_code_entry *NextEntry = __jit_debug_descriptor.first_entry;
    JITCodeEntry->next_entry = NextEntry;
    if (NextEntry) {
        NextEntry->prev_entry = JITCodeEntry;
    }
    __jit_debug_descriptor.first_entry = JITCodeEntry;
    __jit_debug_descriptor.relevant_entry = JITCodeEntry;
    jit_debug_register_code();
}
}
// ------------------------ END OF TEMPORARY COPY FROM LLVM -----------------

#if defined(_OS_LINUX_)
// Resolve non-lock free atomic functions in the libatomic library.
// This is the library that provides support for c11/c++11 atomic operations.
static uint64_t resolve_atomic(const char *name)
{
    static void *atomic_hdl = jl_load_dynamic_library_e("libatomic",
                                                        JL_RTLD_LOCAL);
    static const char *const atomic_prefix = "__atomic_";
    if (!atomic_hdl)
        return 0;
    if (strncmp(name, atomic_prefix, strlen(atomic_prefix)) != 0)
        return 0;
    return (uintptr_t)jl_dlsym_e(atomic_hdl, name);
}
#endif

// Custom object emission notification handler for the JuliaOJIT
extern JITEventListener *CreateJuliaJITEventListener();
JuliaOJIT::DebugObjectRegistrar::DebugObjectRegistrar(JuliaOJIT &JIT)
    : JuliaListener(CreateJuliaJITEventListener()),
      JIT(JIT) {}

JL_DLLEXPORT void ORCNotifyObjectEmitted(JITEventListener *Listener,
                                         const object::ObjectFile &obj,
                                         const object::ObjectFile &debugObj,
                                         const RuntimeDyld::LoadedObjectInfo &L,
                                         RTDyldMemoryManager *memmgr);

// TODO: hook up RegisterJITEventListener, instead of hard-coding the GDB and JuliaListener targets
template <typename ObjSetT, typename LoadResult>
void JuliaOJIT::DebugObjectRegistrar::operator()(RTDyldObjectLinkingLayerBase::ObjSetHandleT H,
                const ObjSetT &Objects, const LoadResult &LOS)
{
#if JL_LLVM_VERSION < 30800
    notifyObjectLoaded(JIT.MemMgr, H);
#endif
    auto oit = Objects.begin();
    auto lit = LOS.begin();
    for (; oit != Objects.end(); ++oit, ++lit) {
#if JL_LLVM_VERSION >= 30900
        const auto &Object = (*oit)->getBinary();
#else
        auto &Object = *oit;
#endif
        auto &LO = *lit;

        OwningBinary<object::ObjectFile> SavedObject = LO->getObjectForDebug(*Object);

        // If the debug object is unavailable, save (a copy of) the original object
        // for our backtraces
        if (!SavedObject.getBinary()) {
            // This is unfortunate, but there doesn't seem to be a way to take
            // ownership of the original buffer
            auto NewBuffer = MemoryBuffer::getMemBufferCopy(Object->getData(),
                                                            Object->getFileName());
            auto NewObj = ObjectFile::createObjectFile(NewBuffer->getMemBufferRef());
            assert(NewObj);
            SavedObject = OwningBinary<object::ObjectFile>(std::move(*NewObj),
                                                           std::move(NewBuffer));
        }
        else {
            NotifyGDB(SavedObject);
        }

        SavedObjects.push_back(std::move(SavedObject));

        ORCNotifyObjectEmitted(JuliaListener.get(),
                *Object,
                *SavedObjects.back().getBinary(),
                *LO, JIT.MemMgr);

        // record all of the exported symbols defined in this object
        // in the primary hash table for the enclosing JIT
        for (auto &Symbol : Object->symbols()) {
            auto Flags = Symbol.getFlags();
            if (Flags & object::BasicSymbolRef::SF_Undefined)
                continue;
            if (!(Flags & object::BasicSymbolRef::SF_Exported))
                continue;
            auto NameOrError = Symbol.getName();
            assert(NameOrError);
            auto Name = NameOrError.get();
            auto Sym = JIT.CompileLayer.findSymbolIn(H, Name, true);
            assert(Sym);
            // note: calling getAddress here eagerly finalizes H
            // as an alternative, we could store the JITSymbol instead
            // (which would present a lazy-initializer functor interface instead)
            JIT.LocalSymbolTable[Name] = (void*)(uintptr_t)Sym.getAddress();
        }
    }
}

void JuliaOJIT::DebugObjectRegistrar::NotifyGDB(OwningBinary<object::ObjectFile> &DebugObj)
{
    const char *Buffer = DebugObj.getBinary()->getMemoryBufferRef().getBufferStart();
    size_t      Size = DebugObj.getBinary()->getMemoryBufferRef().getBufferSize();

    assert(Buffer && "Attempt to register a null object with a debugger.");
    jit_code_entry *JITCodeEntry = new jit_code_entry();

    if (!JITCodeEntry) {
        jl_printf(JL_STDERR, "WARNING: Allocation failed when registering a JIT entry!\n");
    }
    else {
        JITCodeEntry->symfile_addr = Buffer;
        JITCodeEntry->symfile_size = Size;

        NotifyDebugger(JITCodeEntry);
    }
}

JuliaOJIT::JuliaOJIT(TargetMachine &TM)
  : TM(TM),
    DL(TM.createDataLayout()),
    ObjStream(ObjBufferSV),
    MemMgr(createRTDyldMemoryManager()),
    ObjectLayer(DebugObjectRegistrar(*this)),
    CompileLayer(
            ObjectLayer,
            [this](Module &M) {
                JL_TIMING(LLVM_OPT);
                PM.run(M);
                std::unique_ptr<MemoryBuffer> ObjBuffer(
                    new ObjectMemoryBuffer(std::move(ObjBufferSV)));
                auto Obj = object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef());

                if (!Obj) {
#if JL_LLVM_VERSION >= 50000
                    M.print(llvm::dbgs(), nullptr, false, true);
#else
                    M.dump();
#endif
#if JL_LLVM_VERSION >= 30900
                    std::string Buf;
                    raw_string_ostream OS(Buf);
                    logAllUnhandledErrors(Obj.takeError(), OS, "");
                    OS.flush();
                    llvm::report_fatal_error("FATAL: Unable to compile LLVM Module: '" + Buf + "'\n"
                        "The module's content was printed above. Please file a bug report");
#else
                    llvm::report_fatal_error("FATAL: Unable to compile LLVM Module.\n"
                        "The module's content was printed above. Please file a bug report");
#endif
                }

                return OwningObj(std::move(*Obj), std::move(ObjBuffer));
            }
        )
{
    if (!jl_generating_output()) {
        addOptimizationPasses(&PM);
    }
    else {
        PM.add(createLowerGCFramePass());
        PM.add(createLowerPTLSPass(imaging_mode));
    }
    if (TM.addPassesToEmitMC(PM, Ctx, ObjStream))
        llvm_unreachable("Target does not support MC emission.");

    // Make sure SectionMemoryManager::getSymbolAddressInProcess can resolve
    // symbols in the program as well. The nullptr argument to the function
    // tells DynamicLibrary to load the program, not a library.
    std::string *ErrorStr = nullptr;
    if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
        report_fatal_error("FATAL: unable to dlopen self\n" + *ErrorStr);
}

void JuliaOJIT::addGlobalMapping(StringRef Name, uint64_t Addr)
{
    bool successful = GlobalSymbolTable.insert(std::make_pair(Name, (void*)Addr)).second;
    (void)successful;
    assert(successful);
}

void JuliaOJIT::addGlobalMapping(const GlobalValue *GV, void *Addr)
{
    addGlobalMapping(getMangledName(GV), (uintptr_t)Addr);
}

void *JuliaOJIT::getPointerToGlobalIfAvailable(StringRef S)
{
    SymbolTableT::const_iterator pos = GlobalSymbolTable.find(S);
    if (pos != GlobalSymbolTable.end())
        return pos->second;
    return nullptr;
}

void *JuliaOJIT::getPointerToGlobalIfAvailable(const GlobalValue *GV)
{
    return getPointerToGlobalIfAvailable(getMangledName(GV));
}


void JuliaOJIT::addModule(std::unique_ptr<Module> M)
{
#ifndef JL_NDEBUG
    // validate the relocations for M
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ) {
        Function *F = &*I;
        ++I;
        if (F->isDeclaration()) {
            if (F->use_empty())
                F->eraseFromParent();
            else if (!(isIntrinsicFunction(F) ||
                       findUnmangledSymbol(F->getName()) ||
                       SectionMemoryManager::getSymbolAddressInProcess(
                           getMangledName(F->getName())))) {
                std::cerr << "FATAL ERROR: "
                          << "Symbol \"" << F->getName().str() << "\""
                          << "not found";
                abort();
            }
        }
    }
#endif
    JL_TIMING(LLVM_MODULE_FINISH);
    // We need a memory manager to allocate memory and resolve symbols for this
    // new module. Create one that resolves symbols by looking back into the JIT.
    auto Resolver = orc::createLambdaResolver(
                      [&](const std::string &Name) {
                        // TODO: consider moving the FunctionMover resolver here
                        // Step 0: ObjectLinkingLayer has checked whether it is in the current module
                        // Step 1: See if it's something known to the ExecutionEngine
                        if (auto Sym = findSymbol(Name, true)) {
#if JL_LLVM_VERSION >= 40000
                            // `findSymbol` already eagerly resolved the address
                            // return it directly.
                            return Sym;
#else
                            return RuntimeDyld::SymbolInfo(Sym.getAddress(),
                                                           Sym.getFlags());
#endif
                        }
                        // Step 2: Search the program symbols
                        if (uint64_t addr = SectionMemoryManager::getSymbolAddressInProcess(Name))
                            return JL_SymbolInfo(addr, JITSymbolFlags::Exported);
#if defined(_OS_LINUX_)
                        if (uint64_t addr = resolve_atomic(Name.c_str()))
                            return JL_SymbolInfo(addr, JITSymbolFlags::Exported);
#endif
                        // Return failure code
                        return JL_SymbolInfo(nullptr);
                      },
                      [](const std::string &S) { return nullptr; }
                    );
    SmallVector<std::unique_ptr<Module>,1> Ms;
    Ms.push_back(std::move(M));
    auto modset = CompileLayer.addModuleSet(std::move(Ms), MemMgr,
                                            std::move(Resolver));
    // Force LLVM to emit the module so that we can register the symbols
    // in our lookup table.
    CompileLayer.emitAndFinalize(modset);
}

void JuliaOJIT::removeModule(ModuleHandleT H)
{
    CompileLayer.removeModuleSet(H);
}

JL_JITSymbol JuliaOJIT::findSymbol(const std::string &Name, bool ExportedSymbolsOnly)
{
    void *Addr = nullptr;
    if (ExportedSymbolsOnly) {
        // Step 1: Check against list of known external globals
        Addr = getPointerToGlobalIfAvailable(Name);
    }
    // Step 2: Search all previously emitted symbols
    if (Addr == nullptr)
        Addr = LocalSymbolTable[Name];
    return JL_JITSymbol((uintptr_t)Addr, JITSymbolFlags::Exported);
}

JL_JITSymbol JuliaOJIT::findUnmangledSymbol(const std::string Name)
{
    return findSymbol(getMangledName(Name), true);
}

uint64_t JuliaOJIT::getGlobalValueAddress(const std::string &Name)
{
    return findSymbol(getMangledName(Name), false).getAddress();
}

uint64_t JuliaOJIT::getFunctionAddress(const std::string &Name)
{
    return findSymbol(getMangledName(Name), false).getAddress();
}

Function *JuliaOJIT::FindFunctionNamed(const std::string &Name)
{
    return shadow_output->getFunction(Name);
}

void JuliaOJIT::RegisterJITEventListener(JITEventListener *L)
{
    // TODO
}

const DataLayout& JuliaOJIT::getDataLayout() const
{
    return DL;
}

const Triple& JuliaOJIT::getTargetTriple() const
{
    return TM.getTargetTriple();
}

std::string JuliaOJIT::getMangledName(const std::string &Name)
{
    SmallString<128> FullName;
    Mangler::getNameWithPrefix(FullName, Name, DL);
    return FullName.str();
}

std::string JuliaOJIT::getMangledName(const GlobalValue *GV)
{
    return getMangledName(GV->getName());
}

JuliaOJIT *jl_ExecutionEngine;
#else
ExecutionEngine *jl_ExecutionEngine;
#endif

// MSVC's link.exe requires each function declaration to have a Comdat section
// So rather than litter the code with conditionals,
// all global values that get emitted call this function
// and it decides whether the definition needs a Comdat section and adds the appropriate declaration
// TODO: consider moving this into jl_add_to_shadow or jl_dump_shadow? the JIT doesn't care, so most calls are now no-ops
template<class T> // for GlobalObject's
static T *addComdat(T *G)
{
#if defined(_OS_WINDOWS_) && JL_LLVM_VERSION >= 30500
    if (imaging_mode && !G->isDeclaration()) {
        // Add comdat information to make MSVC link.exe happy
        // it's valid to emit this for ld.exe too,
        // but makes it very slow to link for no benefit
        if (G->getParent() == shadow_output) {
#if defined(_COMPILER_MICROSOFT_)
            Comdat *jl_Comdat = G->getParent()->getOrInsertComdat(G->getName());
            // ELF only supports Comdat::Any
            jl_Comdat->setSelectionKind(Comdat::NoDuplicates);
            G->setComdat(jl_Comdat);
#endif
#if defined(_CPU_X86_64_)
            // Add unwind exception personalities to functions to handle async exceptions
            assert(!juliapersonality_func || juliapersonality_func->getParent() == shadow_output);
            if (Function *F = dyn_cast<Function>(G))
                F->setPersonalityFn(juliapersonality_func);
#endif
        }
        // add __declspec(dllexport) to everything marked for export
        if (G->getLinkage() == GlobalValue::ExternalLinkage)
            G->setDLLStorageClass(GlobalValue::DLLExportStorageClass);
        else
            G->setDLLStorageClass(GlobalValue::DefaultStorageClass);
    }
#endif
    return G;
}

// destructively move the contents of src into dest
// this assumes that the targets of the two modules are the same
// including the DataLayout and ModuleFlags (for example)
// and that there is no module-level assembly
static void jl_merge_module(Module *dest, std::unique_ptr<Module> src)
{
    assert(dest != src.get());
    for (Module::global_iterator I = src->global_begin(), E = src->global_end(); I != E;) {
        GlobalVariable *sG = &*I;
        GlobalValue *dG = dest->getNamedValue(sG->getName());
        ++I;
        // Replace a declaration with the definition:
        if (dG) {
            if (sG->isDeclaration()) {
                sG->replaceAllUsesWith(dG);
                sG->eraseFromParent();
                continue;
            }
            else {
                dG->replaceAllUsesWith(sG);
                dG->eraseFromParent();
            }
        }
        // Reparent the global variable:
        sG->removeFromParent();
        dest->getGlobalList().push_back(sG);
        // Comdat is owned by the Module, recreate it in the new parent:
        addComdat(sG);
    }

    for (Module::iterator I = src->begin(), E = src->end(); I != E;) {
        Function *sG = &*I;
        GlobalValue *dG = dest->getNamedValue(sG->getName());
        ++I;
        // Replace a declaration with the definition:
        if (dG) {
            if (sG->isDeclaration()) {
                sG->replaceAllUsesWith(dG);
                sG->eraseFromParent();
                continue;
            }
            else {
                dG->replaceAllUsesWith(sG);
                dG->eraseFromParent();
            }
        }
        // Reparent the global variable:
        sG->removeFromParent();
        dest->getFunctionList().push_back(sG);
        // Comdat is owned by the Module, recreate it in the new parent:
        addComdat(sG);
    }

    for (Module::alias_iterator I = src->alias_begin(), E = src->alias_end(); I != E;) {
        GlobalAlias *sG = &*I;
        GlobalValue *dG = dest->getNamedValue(sG->getName());
        ++I;
        if (dG) {
            if (!dG->isDeclaration()) { // aliases are always definitions, so this test is reversed from the above two
                sG->replaceAllUsesWith(dG);
                sG->eraseFromParent();
                continue;
            }
            else {
                dG->replaceAllUsesWith(sG);
                dG->eraseFromParent();
            }
        }
        sG->removeFromParent();
        dest->getAliasList().push_back(sG);
    }

    // metadata nodes need to be explicitly merged not just copied
    // so there are special passes here for each known type of metadata
    NamedMDNode *sNMD = src->getNamedMetadata("llvm.dbg.cu");
    if (sNMD) {
        NamedMDNode *dNMD = dest->getOrInsertNamedMetadata("llvm.dbg.cu");
#if JL_LLVM_VERSION >= 30500
        for (NamedMDNode::op_iterator I = sNMD->op_begin(), E = sNMD->op_end(); I != E; ++I) {
            dNMD->addOperand(*I);
        }
#else
        for (unsigned i = 0, l = sNMD->getNumOperands(); i < l; i++) {
            dNMD->addOperand(sNMD->getOperand(i));
        }
#endif
    }
}

// to finalize a function, look up its name in the `module_for_fname` map of
// unfinalized functions and merge it, plus any other modules it depends upon,
// into `collector` then add `collector` to the execution engine
static StringMap<Module*> module_for_fname;
static void jl_merge_recursive(Module *m, Module *collector);

#if defined(USE_MCJIT) || defined(USE_ORCJIT)
static void jl_add_to_ee(std::unique_ptr<Module> m)
{
#if defined(_CPU_X86_64_) && defined(_OS_WINDOWS_) && JL_LLVM_VERSION >= 30500
    // Add special values used by debuginfo to build the UnwindData table registration for Win64
    ArrayType *atype = ArrayType::get(T_uint32, 3); // want 4-byte alignment of 12-bytes of data
    (new GlobalVariable(*m, atype,
        false, GlobalVariable::InternalLinkage,
        ConstantAggregateZero::get(atype), "__UnwindData"))->setSection(".text");
    (new GlobalVariable(*m, atype,
        false, GlobalVariable::InternalLinkage,
        ConstantAggregateZero::get(atype), "__catchjmp"))->setSection(".text");
#endif
    assert(jl_ExecutionEngine);
#if JL_LLVM_VERSION >= 30600
    jl_ExecutionEngine->addModule(std::move(m));
#else
    jl_ExecutionEngine->addModule(m.release());
#endif
}

void jl_finalize_function(Function *F)
{
    std::unique_ptr<Module> m(module_for_fname.lookup(F->getName()));
    if (m) {
        jl_merge_recursive(m.get(), m.get());
        jl_add_to_ee(std::move(m));
    }
}
#else
static bool jl_try_finalize(Module *m)
{
    for (Module::iterator I = m->begin(), E = m->end(); I != E; ++I) {
        Function *F = &*I;
        if (F->isDeclaration() && !isIntrinsicFunction(F)) {
            if (!jl_can_finalize_function(F))
                return false;
        }
    }
    jl_merge_recursive(m, shadow_output);
    jl_merge_module(shadow_output, std::unique_ptr<Module>(m));
    return true;
}
#endif

static void jl_finalize_function(const std::string &F, Module *collector)
{
    std::unique_ptr<Module> m(module_for_fname.lookup(F));
    if (m) {
        jl_merge_recursive(m.get(), collector);
        jl_merge_module(collector, std::move(m));
    }
}

static void jl_merge_recursive(Module *m, Module *collector)
{
    // probably not many unresolved declarations, but be sure to iterate over their Names,
    // since the declarations may get destroyed by the jl_merge_module call.
    // this is also why we copy the Name string, rather than save a StringRef
    SmallVector<std::string, 8> to_finalize;
    for (Module::iterator I = m->begin(), E = m->end(); I != E; ++I) {
        Function *F = &*I;
        if (!F->isDeclaration()) {
            module_for_fname.erase(F->getName());
        }
        else if (!isIntrinsicFunction(F)) {
            to_finalize.push_back(F->getName().str());
        }
    }

    for (const auto F : to_finalize) {
        jl_finalize_function(F, collector);
    }
}

// see if any of the functions needed by F are still WIP
static StringSet<> incomplete_fname;
static bool jl_can_finalize_function(StringRef F, SmallSet<Module*, 16> &known)
{
    if (incomplete_fname.find(F) != incomplete_fname.end())
        return false;
    Module *M = module_for_fname.lookup(F);
#if JL_LLVM_VERSION >= 30500
    if (M && known.insert(M).second)
#else
    if (M && known.insert(M))
#endif
    {
        for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
            Function *F = &*I;
            if (F->isDeclaration() && !isIntrinsicFunction(F)) {
                if (!jl_can_finalize_function(F->getName(), known))
                    return false;
            }
        }
    }
    return true;
}
bool jl_can_finalize_function(Function *F)
{
    SmallSet<Module*, 16> known;
    return jl_can_finalize_function(F->getName(), known);
}

// let the JIT know this function is a WIP
void jl_init_function(Function *F)
{
    incomplete_fname.insert(F->getName());
}

// this takes ownership of a module after code emission is complete
// and will add it to the execution engine when required (by jl_finalize_function)
void jl_finalize_module(Module *m, bool shadow)
{
#if !defined(USE_ORCJIT)
    jl_globalPM->run(*m);
#endif
    // record the function names that are part of this Module
    // so it can be added to the JIT when needed
    for (Module::iterator I = m->begin(), E = m->end(); I != E; ++I) {
        Function *F = &*I;
        if (!F->isDeclaration()) {
            bool known = incomplete_fname.erase(F->getName());
            (void)known; // TODO: assert(known); // llvmcall gets this wrong
            module_for_fname[F->getName()] = m;
        }
    }
#if defined(USE_ORCJIT) || defined(USE_MCJIT)
    // in the newer JITs, the shadow module is separate from the execution module
    if (shadow)
        jl_add_to_shadow(m);
#else
    bool changes = jl_try_finalize(m);
    while (changes) {
        // this definitely isn't the most efficient, but it's only for the old LLVM 3.3 JIT
        changes = false;
        for (StringMap<Module*>::iterator MI = module_for_fname.begin(), ME = module_for_fname.end(); MI != ME; ++MI) {
            changes |= jl_try_finalize(MI->second);
        }
    }
#endif
}

// helper function for adding a DLLImport (dlsym) address to the execution engine
// (for values created locally or in the sysimage, jl_emit_and_add_to_shadow is generally preferable)
#if JL_LLVM_VERSION >= 30500
void add_named_global(GlobalObject *gv, void *addr, bool dllimport)
#else
void add_named_global(GlobalValue *gv, void *addr, bool dllimport)
#endif
{
#ifdef _OS_WINDOWS_
    // setting JL_DLLEXPORT correctly only matters when building a binary
    // (global_proto will strip this from the JIT)
    if (dllimport && imaging_mode) {
        assert(gv->getLinkage() == GlobalValue::ExternalLinkage);
#if JL_LLVM_VERSION >= 30500
        // add the __declspec(dllimport) attribute
        gv->setDLLStorageClass(GlobalValue::DLLImportStorageClass);
#else
        gv->setLinkage(GlobalValue::DLLImportLinkage);
#if defined(_P64)
        // __imp_ variables are indirection pointers, so use malloc to simulate that
        void **imp_addr = (void**)malloc(sizeof(void*));
        *imp_addr = addr;
        addr = (void*)imp_addr;
#endif
#endif
    }
#endif // _OS_WINDOWS_

    jl_ExecutionEngine->addGlobalMapping(gv, addr);
}

static std::vector<Constant*> jl_sysimg_gvars;
static std::vector<Constant*> jl_sysimg_fvars;
static std::map<void*, jl_value_llvm> jl_value_to_llvm;

// global variables to pointers are pretty common,
// so this method is available as a convenience for emitting them.
// for other types, the formula for implementation is straightforward:
// (see stringConstPtr, for an alternative example to the code below)
//
// if in imaging_mode, emit a GlobalVariable with the same name and an initializer to the shadow_module
// making it valid for emission and reloading in the sysimage
//
// then add a global mapping to the current value (usually from calloc'd space)
// to the execution engine to make it valid for the current session (with the current value)
void* jl_emit_and_add_to_shadow(GlobalVariable *gv, void *gvarinit)
{
    PointerType *T = cast<PointerType>(gv->getType()->getElementType()); // pointer is the only supported type here

    GlobalVariable *shadowvar = NULL;
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
    if (imaging_mode)
#endif
        shadowvar = global_proto(gv, shadow_output);

    if (shadowvar) {
        shadowvar->setInitializer(ConstantPointerNull::get(T));
        shadowvar->setLinkage(GlobalVariable::InternalLinkage);
        addComdat(shadowvar);
        if (imaging_mode && gvarinit) {
            // make the pointer valid for future sessions
            jl_sysimg_gvars.push_back(ConstantExpr::getBitCast(shadowvar, T_psize));
            jl_value_llvm gv_struct;
            gv_struct.gv = global_proto(gv);
            gv_struct.index = jl_sysimg_gvars.size();
            jl_value_to_llvm[gvarinit] = gv_struct;
        }
    }

    // make the pointer valid for this session
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
    void *slot = calloc(1, sizeof(void*));
    jl_ExecutionEngine->addGlobalMapping(gv, slot);
    return slot;
#else
    return jl_ExecutionEngine->getPointerToGlobal(shadowvar);
#endif
}

// Emit a slot in the system image to be filled at sysimg init time.
// Returns the global var. Fill `idx` with 1-base index in the sysimg gv.
// Use as an optimization for runtime constant addresses to have one less
// load. (Used only by threading).
GlobalVariable *jl_emit_sysimg_slot(Module *m, Type *typ, const char *name,
                                           uintptr_t init, size_t &idx)
{
    assert(imaging_mode);
    // This is **NOT** a external variable or a normal global variable
    // This is a special internal global slot with a special index
    // in the global variable table.
    GlobalVariable *gv = new GlobalVariable(*m, typ, false,
                                            GlobalVariable::InternalLinkage,
                                            ConstantPointerNull::get((PointerType*)typ), name);
    addComdat(gv);
    // make the pointer valid for this session
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
    auto p = new uintptr_t(init);
    jl_ExecutionEngine->addGlobalMapping(gv, (void*)p);
#else
    uintptr_t *p = (uintptr_t*)jl_ExecutionEngine->getPointerToGlobal(gv);
    *p = init;
#endif
    jl_sysimg_gvars.push_back(ConstantExpr::getBitCast(gv, T_psize));
    idx = jl_sysimg_gvars.size();
    return gv;
}

void* jl_get_global(GlobalVariable *gv)
{
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
    void *p = (void*)(intptr_t)jl_ExecutionEngine->getPointerToGlobalIfAvailable(gv);
#else
    void *p = jl_ExecutionEngine->getPointerToGlobal(
            shadow_output->getNamedValue(gv->getName()));
#endif
    assert(p);
    return p;
}

// clones the contents of the module `m` to the shadow_output collector
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
void jl_add_to_shadow(Module *m)
{
#ifndef KEEP_BODIES
    if (!imaging_mode)
        return;
#endif
    ValueToValueMapTy VMap;
    std::unique_ptr<Module> clone(CloneModule(m, VMap));
    for (Module::iterator I = clone->begin(), E = clone->end(); I != E; ++I) {
        Function *F = &*I;
        if (!F->isDeclaration()) {
            F->setLinkage(Function::InternalLinkage);
            addComdat(F);
        }
    }
    jl_merge_module(shadow_output, std::move(clone));
}
#endif

#ifdef HAVE_CPUID
extern "C" {
    extern void jl_cpuid(int32_t CPUInfo[4], int32_t InfoType);
}
#endif

static void jl_gen_llvm_globaldata(llvm::Module *mod, ValueToValueMapTy &VMap,
                                   const char *sysimg_data, size_t sysimg_len)
{
    ArrayType *gvars_type = ArrayType::get(T_psize, jl_sysimg_gvars.size());
    addComdat(new GlobalVariable(*mod,
                                 gvars_type,
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 MapValue(ConstantArray::get(gvars_type, ArrayRef<Constant*>(jl_sysimg_gvars)), VMap),
                                 "jl_sysimg_gvars"));
    ArrayType *fvars_type = ArrayType::get(T_pvoidfunc, jl_sysimg_fvars.size());
    addComdat(new GlobalVariable(*mod,
                                 fvars_type,
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 MapValue(ConstantArray::get(fvars_type, ArrayRef<Constant*>(jl_sysimg_fvars)), VMap),
                                 "jl_sysimg_fvars"));
    addComdat(new GlobalVariable(*mod,
                                 T_size,
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 ConstantInt::get(T_size, globalUnique+1),
                                 "jl_globalUnique"));
#ifdef JULIA_ENABLE_THREADING
    addComdat(new GlobalVariable(*mod,
                                 T_size,
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 ConstantInt::get(T_size, jltls_states_func_idx),
                                 "jl_ptls_states_getter_idx"));
#endif

    Constant *feature_string = ConstantDataArray::getString(jl_LLVMContext, jl_options.cpu_target);
    addComdat(new GlobalVariable(*mod,
                                 feature_string->getType(),
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 feature_string,
                                 "jl_sysimg_cpu_target"));

    // reflect the address of the jl_RTLD_DEFAULT_handle variable
    // back to the caller, so that we can check for consistency issues
    GlobalValue *jlRTLD_DEFAULT_var = mod->getNamedValue("jl_RTLD_DEFAULT_handle");
    addComdat(new GlobalVariable(*mod,
                                 jlRTLD_DEFAULT_var->getType(),
                                 true,
                                 GlobalVariable::ExternalLinkage,
                                 jlRTLD_DEFAULT_var,
                                 "jl_RTLD_DEFAULT_handle_pointer"));

#ifdef HAVE_CPUID
    // For native also store the cpuid
    if (strcmp(jl_options.cpu_target,"native") == 0) {
        uint32_t info[4];

        jl_cpuid((int32_t*)info, 1);
        addComdat(new GlobalVariable(*mod,
                                     T_uint64,
                                     true,
                                     GlobalVariable::ExternalLinkage,
                                     ConstantInt::get(T_uint64,((uint64_t)info[2])|(((uint64_t)info[3])<<32)),
                                     "jl_sysimg_cpu_cpuid"));
    }
#endif

    if (sysimg_data) {
        Constant *data = ConstantDataArray::get(jl_LLVMContext,
            ArrayRef<uint8_t>((const unsigned char*)sysimg_data, sysimg_len));
        addComdat(new GlobalVariable(*mod, data->getType(), true,
                                     GlobalVariable::ExternalLinkage,
                                     data, "jl_system_image_data"));
        Constant *len = ConstantInt::get(T_size, sysimg_len);
        addComdat(new GlobalVariable(*mod, len->getType(), true,
                                     GlobalVariable::ExternalLinkage,
                                     len, "jl_system_image_size"));
    }
}

// takes the running content that has collected in the shadow module and dump it to disk
// this builds the object file portion of the sysimage files for fast startup
extern "C"
void jl_dump_native(const char *bc_fname, const char *obj_fname, const char *sysimg_data, size_t sysimg_len)
{
    JL_TIMING(NATIVE_DUMP);
    assert(imaging_mode);
    // We don't want to use MCJIT's target machine because
    // it uses the large code model and we may potentially
    // want less optimizations there.
    Triple TheTriple = Triple(jl_TargetMachine->getTargetTriple());
    // make sure to emit the native object format, even if FORCE_ELF was set in codegen
#if defined(_OS_WINDOWS_)
#if JL_LLVM_VERSION >= 30500
    TheTriple.setObjectFormat(Triple::COFF);
#else
    TheTriple.setEnvironment(Triple::UnknownEnvironment);
#endif
#elif defined(_OS_DARWIN_)
#if JL_LLVM_VERSION >= 30500
    TheTriple.setObjectFormat(Triple::MachO);
#else
    TheTriple.setEnvironment(Triple::MachO);
#endif
#endif
#if JL_LLVM_VERSION >= 30500
    std::unique_ptr<TargetMachine>
#else
    OwningPtr<TargetMachine>
#endif
    TM(jl_TargetMachine->getTarget().createTargetMachine(
        TheTriple.getTriple(),
        jl_TargetMachine->getTargetCPU(),
        jl_TargetMachine->getTargetFeatureString(),
        jl_TargetMachine->Options,
#if defined(_OS_LINUX_) || defined(_OS_FREEBSD_)
        Reloc::PIC_,
#elif JL_LLVM_VERSION >= 30900
        Optional<Reloc::Model>(),
#else
        Reloc::Default,
#endif
        CodeModel::Default,
        CodeGenOpt::Aggressive // -O3 TODO: respect command -O0 flag?
        ));

#if JL_LLVM_VERSION >= 30700
    legacy::PassManager PM;
#else
    PassManager PM;
#endif
#if JL_LLVM_VERSION < 30700
    PM.add(new TargetLibraryInfo(Triple(TM->getTargetTriple())));
#else
    PM.add(new TargetLibraryInfoWrapperPass(Triple(TM->getTargetTriple())));
#endif


    // set up optimization passes
#if JL_LLVM_VERSION >= 30700
    // No DataLayout pass needed anymore.
#elif JL_LLVM_VERSION >= 30600
    PM.add(new DataLayoutPass());
#elif JL_LLVM_VERSION >= 30500
    PM.add(new DataLayoutPass(*jl_ExecutionEngine->getDataLayout()));
#else
    PM.add(new DataLayout(*jl_ExecutionEngine->getDataLayout()));
#endif

    addOptimizationPasses(&PM);

    std::unique_ptr<raw_fd_ostream> bc_OS;
    std::unique_ptr<raw_fd_ostream> obj_OS;
#if JL_LLVM_VERSION >= 30700 // 3.7 simplified formatted output; just use the raw stream alone
    std::unique_ptr<raw_fd_ostream> &bc_FOS = bc_OS;
    std::unique_ptr<raw_fd_ostream> &obj_FOS = obj_OS;
#else
    std::unique_ptr<formatted_raw_ostream> bc_FOS;
    std::unique_ptr<formatted_raw_ostream> obj_FOS;
#endif

    if (bc_fname) {
#if JL_LLVM_VERSION >= 30500
        // call output handler directly to avoid special case handling of `-` filename
        int FD;
        std::error_code EC = sys::fs::openFileForWrite(bc_fname, FD, sys::fs::F_None);
        bc_OS.reset(new raw_fd_ostream(FD, true));
        std::string err;
        if (EC)
            err = "ERROR: failed to open --output-bc file '" + std::string(bc_fname) + "': " + EC.message();
#else
        std::string err;
        bc_OS.reset(new raw_fd_ostream(bc_fname, err, raw_fd_ostream::F_Binary));
#endif
        if (!err.empty())
            jl_safe_printf("%s\n", err.c_str());
        else {
#if JL_LLVM_VERSION < 30700
            bc_FOS.reset(new formatted_raw_ostream(*bc_OS.get()));
#endif
            PM.add(createBitcodeWriterPass(*bc_FOS.get()));     // Unroll small loops
        }
    }

    if (obj_fname) {
#if JL_LLVM_VERSION >= 30500
        // call output handler directly to avoid special case handling of `-` filename
        int FD;
        std::error_code EC = sys::fs::openFileForWrite(obj_fname, FD, sys::fs::F_None);
        obj_OS.reset(new raw_fd_ostream(FD, true));
        std::string err;
        if (EC)
            err = "ERROR: failed to open --output-o file '" + std::string(obj_fname) + "': " + EC.message();
#else
        std::string err;
        obj_OS.reset(new raw_fd_ostream(obj_fname, err, raw_fd_ostream::F_Binary));
#endif
        if (!err.empty())
            jl_safe_printf("%s\n", err.c_str());
        else {
#if JL_LLVM_VERSION < 30700
            obj_FOS.reset(new formatted_raw_ostream(*obj_OS.get()));
#endif
            if (TM->addPassesToEmitFile(PM, *obj_FOS.get(), TargetMachine::CGFT_ObjectFile, false)) {
                jl_safe_printf("ERROR: target does not support generation of object files\n");
            }
        }
    }

    ValueToValueMapTy VMap;
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
    // now copy the module (if using the old JIT), since PM.run may modify it
    Module *clone = shadow_output;
#else
    Module *clone = CloneModule(shadow_output, VMap);
#endif

#if JL_LLVM_VERSION >= 30700
    // Reset the target triple to make sure it matches the new target machine
    clone->setTargetTriple(TM->getTargetTriple().str());
#if JL_LLVM_VERSION >= 30800
    clone->setDataLayout(TM->createDataLayout());
#else
    clone->setDataLayout(TM->getDataLayout()->getStringRepresentation());
#endif
#endif

    // add metadata information
    jl_gen_llvm_globaldata(clone, VMap, sysimg_data, sysimg_len);

    // do the actual work
    PM.run(*clone);
#if !defined(USE_MCJIT) && !defined(USE_ORCJIT)
    delete clone;
#endif
    imaging_mode = false;
}

extern "C" int32_t jl_assign_functionID(void *function)
{
    // give the function an index in the constant lookup table
    assert(imaging_mode);
    if (function == NULL)
        return 0;
    jl_sysimg_fvars.push_back(ConstantExpr::getBitCast(
                shadow_output->getNamedValue(((Function*)function)->getName()),
                T_pvoidfunc));
    return jl_sysimg_fvars.size();
}

extern "C" int32_t jl_get_llvm_gv(jl_value_t *p)
{
    // map a jl_value_t memory location to a GlobalVariable
    std::map<void*, jl_value_llvm>::iterator it;
    it = jl_value_to_llvm.find(p);
    if (it == jl_value_to_llvm.end())
        return 0;
    return it->second.index;
}

GlobalVariable *jl_get_global_for(const char *cname, void *addr, Module *M)
{
    // emit a GlobalVariable for a jl_value_t named "cname"
    std::map<void*, jl_value_llvm>::iterator it;
    // first see if there already is a GlobalVariable for this address
    it = jl_value_to_llvm.find(addr);
    if (it != jl_value_to_llvm.end())
        return prepare_global((llvm::GlobalVariable*)it->second.gv, M);

    std::stringstream gvname;
    gvname << cname << globalUnique++;
    // no existing GlobalVariable, create one and store it
    GlobalVariable *gv = new GlobalVariable(*M, T_pjlvalue,
                           false, GlobalVariable::ExternalLinkage,
                           NULL, gvname.str());
    *(void**)jl_emit_and_add_to_shadow(gv, addr) = addr;
    return gv;
}
back to top