Revision 6aa7805ff1eef8ecb881b5099f3cd30f7c2bd637 authored by Martin Schlather on 08 August 1977, 00:00:00 UTC, committed by Gabor Csardi on 08 August 1977, 00:00:00 UTC
1 parent a3c58bc
RFempvario.cc
/*
Authors Martin Schlather, martin.schlather@cu.lu
Simulation of a random field by circular embedding
(see Wood and Chan, or Dietrich and Newsam for the theory )
Copyright (C) 2002 - 2004 Martin Schlather,
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "RFsimu.h"
#include <assert.h>
// z coordinate run the fastest in values, x the slowest
#define TOOLS_MEMORYERROR 1
#define TOOLS_XERROR 2
#define TOOLS_BIN_ERROR 3
double EV_TIMES_LESS = 2.0; // 0:always new method; inf:always usual method
int EV_SYSTEM_LARGER = 100; // 0:always new method; inf:always usual method
Real variogram(Real a, Real b) {register Real dummy;dummy=a-b; return dummy*dummy;}
Real Efunction(Real a, Real b) {return a + b;}
/* see Schlather (2001), Bernoulli, 7(1), 99-117
Schlather (????), Math. Nachr, conditionally accepted
Schlather, Ribeiro, Diggle (in prep.)
*/
Real kmm(Real a, Real b) {return a * b;} /*
Stoyan's k_mm function
see Stoyan, Kendall, & Mecke,
or Stoyan & Stoyan (both Wiley)
*/
int LOW = -1;
void empiricalvariogram(Real *x, int *dim, int *lx,
Real *values, int *repet, int *grid,
Real *bin, int *nbin, int *charact,
Real *res,
Real *sd, //
// note that within the subsequent algorithm
// the sd of the Efct ist correctly calculated:
// instead for summing up Efct^2 in sd one should
// sum up a^2 + b^2 !
// so finally only NAs are returned in this case
// use emp
int *n)
/* x : matrix of coordinates, ### rows define points
* dim : dimension,
* lx : length of x,y, and z
* values : (univariate) data for the points
* repet : number of repetitions (the calculated emprical variogram will
* be an overall average)
* grid : (boolean) if true lx must be 3 [ x==c(start,end,step) ]
* bin : specification of the bins
* sequence is checked whether it is strictly isotone
* nbin : number of bins. i.e. length(bin)-1
* character: 1 : function E
* 2 : Stoyan's kmm function
* default : semivariogram
* res : empirical variogram
* n : number of pairs for each bin
*/
{
int i,ii,j,d,halfnbin,gridpoints[MAXDIM],dimM1,EV_METHOD,error;
long totalpoints,totalpointsrepet, segment, factor;
Real (*characteristic)(Real, Real);
Real *xx[MAXDIM],maxdist[MAXDIM],dd,*BinSq;
BinSq = NULL;
for (segment=i=0; i<*dim; i++, segment+=*lx) xx[i]=&(x[segment]);
if (xx[0]==NULL) {error=TOOLS_XERROR; goto ErrorHandling;}
for (i=0; i<*nbin;i++) {
if (bin[i]>=bin[i+1]) {error=TOOLS_BIN_ERROR; goto ErrorHandling;}
}
dimM1 = *dim-1;
halfnbin = *nbin / 2;
switch (*charact) {
case 0 :
characteristic = variogram;
factor = 2;
break;
case 1 :
characteristic = Efunction;
factor = 2;
break;
case 2 :
characteristic = kmm;
factor = 1;
break;
default : assert(false);
}
if ((BinSq = (Real *) malloc(sizeof(Real)* (*nbin + 1)))==NULL) {
error=TOOLS_MEMORYERROR; goto ErrorHandling;
}
for (i=0;i<*nbin;i++){sd[i]=res[i]=0.0;n[i]=0;}
for (i=0;i<=*nbin;i++){if (bin[i]>0) BinSq[i]=bin[i] * bin[i];
else BinSq[i]=bin[i];
}
//////////////////////////////////// GRID ////////////////////////////////////
if (*grid) {
int d1,d2,head,tail,swapstart;
Real p1[MAXDIM],p2[MAXDIM],distSq,dx[MAXDIM];
int delta[MAXDIM],deltaTwo[MAXDIM],maxtail,low,cur;
long indextail[MAXDIM],indexhead[MAXDIM],valuePtail,valuePointhead,
segmentbase[MAXDIM],DeltaTwoSegmentbase[MAXDIM],
DeltaFourSegmentbase[MAXDIM],
SegmentbaseTwo[MAXDIM],SegmentbaseFour[MAXDIM];
Real psq[MAXDIM],p[MAXDIM],maxbinsquare;
bool forbid;
// does not work!! :
//GetGridSize(x,y,z,dim,&(gridpoints[0]),&(gridpoints[1]),&(gridpoints[2]));
// totalpoints = gridpoints[0] * gridpoints[1] * gridpoints[2];
//
// instead :
for (dd=0.0,totalpoints=1,i=0; i<=dimM1; i++) {
gridpoints[i] = (int) ((xx[i][XEND]-xx[i][XSTART])/xx[i][XSTEP]+1.5);
totalpoints *= gridpoints[i];
maxdist[i]=(gridpoints[i]-1)*xx[i][2]; dd += maxdist[i]*maxdist[i];
}
EV_METHOD = (int) ( ((EV_TIMES_LESS * BinSq[*nbin]) < dd) ||
(EV_SYSTEM_LARGER<totalpoints)); // ? large system ?
for (i=0;i<=dimM1;i++) { dx[i] = xx[i][2] * 0.99999999; }
totalpointsrepet = totalpoints * *repet;
segmentbase[0]=1; // here x runs the fastest;
SegmentbaseTwo[0]=segmentbase[0] << 1;
SegmentbaseFour[0]=segmentbase[0] << 2;
for (i=1;i<=dimM1;i++) {
segmentbase[i]=segmentbase[i-1] * gridpoints[i-1];
SegmentbaseTwo[i]=segmentbase[i] <<1;
SegmentbaseFour[i]=segmentbase[i] <<2;
}
switch (EV_METHOD) {
case 0 :
for (i=0;i<=dimM1;i++) {indexhead[i]=0; p1[i]=0.0;}
// loop through all pair of points, except (head,tail) for head=tail,
// which is treated separately at the end, if necessary (not relevant for
// variogram itself, but for function E and V)
for (head=0;head<totalpoints;) {
for (i=0;i<=dimM1;i++) {indextail[i]=0; p2[i]=0.0;}
for (tail=0;tail<head;) {
distSq=0.0;
for (i=0;i<=dimM1;i++) {
Real dx;
dx = p1[i]-p2[i];
distSq += dx * dx;
}
if ((distSq>BinSq[0]) && (distSq<=BinSq[*nbin])) {
/* search which bin distSq in */
register int up, cur, low;
low=0; up= *nbin; /* 21.2.01, *nbin-1 */ cur= halfnbin;
while (low!=up) {
if (distSq> BinSq[cur]) {low=cur;} else {up=cur-1;} /* ( * ; * ] */
cur=(up+low+1)/2;
}
for (segment=0;segment<totalpointsrepet;segment += totalpoints) {
Real x;
x = characteristic(values[head+segment],values[tail+segment]);
res[low] += x;
sd[low] += x * x;
}
assert(low<*nbin);
n[low]++;
}
tail++;
d2=dimM1;
indextail[d2]++; p2[d2]+=dx[d2];
while (indextail[d2]>=gridpoints[d2]) {
indextail[d2]=0; p2[d2]=0;
d2--;
assert(d2>=0);
indextail[d2]++; p2[d2]+=dx[d2];
}
}
head++;
if (head<totalpoints) {
d1=dimM1;
indexhead[d1]++; p1[d1]+=dx[d1];
while (indexhead[d1]>=gridpoints[d1]) {
indexhead[d1]=0; p1[d1]=0;
d1--;
assert(d1>=0);
indexhead[d1]++; p1[d1]+=dx[d1];
}
}
}
if(GENERAL_PRINTLEVEL>=8)
{
for(i=0;i<*nbin;i++){
PRINTF(" %d:%f(%f,%d)",i,res[i]/(Real)(factor * n[i]),res[i],n[i]);
}
PRINTF(" XXXY\n");
}
break;
/************************************************************************/
/************************************************************************/
case 1 :
/* idea:
1) fix a vector `delta' of positive components
2) search for any pair of points whose distSqance vector dv equals
|dv[i]|=delta
and some the f(value1,value2) up.
realisation :
1) one preferred direction, namely dimM1-direction (of 0..dimM1)
2) for the minor directions, swap the values of delta from positive
to negative (all 2^{dimM1} posibilities) --> indexhead
EXCEPTION : delta[dimM1]==0. Then only the minor directions up to
dimM1-2 are swapped!
(otherwise values will be counted twice as indextail is
running through all the positions with
coordinate[dimM1]==0)
if delta[dimM1-1] is also 0 then only minor direction up to dimM1-3
are swapped, etc.
3) indextail running through all positions with coordinate[dimM1]==0.
This is not very effective if the grid is small in comparison to the
right boundary of the bins!
*/
maxbinsquare = BinSq[*nbin];
for (i=0;i<=dimM1;i++) {delta[i]=0; psq[i]=p[i]=0.0;}
for (;;) { // delta
do {
d=0;
delta[d]++; // this excludes distSq==0 !
p[d]+=dx[d]; psq[d]=p[d]*p[d];
for (distSq=0.0,i=0;i<=dimM1;i++) {distSq+=psq[i];}
while ((distSq>maxbinsquare) || (p[d]>maxdist[d])) {/* (*) */
delta[d]=0; psq[d]=p[d]=0.0;
d++;
if (d<=dimM1) {
delta[d]++; p[d]+=dx[d]; psq[d]=p[d]*p[d];
for (distSq=0.0,i=0;i<=dimM1;i++) {distSq+=psq[i];}
} else break;
}
} while ((distSq<=BinSq[0]) && (d<=dimM1));
if (d>dimM1) break;
if (GENERAL_PRINTLEVEL>=10)
PRINTF("\n {%d %d %d}",delta[0],delta[1],delta[2]);
assert((distSq<=BinSq[*nbin]) && (distSq>BinSq[0]));
{
register int up;
low=0; up= *nbin; /* */ cur= halfnbin;
while(low!=up){
if (distSq> BinSq[cur]) {low=cur;} else {up=cur-1;} /* ( * ; * ] */
cur=(up+low+1)/2; }
}
i=0;
while ((i<dimM1) && (delta[i]==0)) i++;
swapstart=i+1;
for(i=0;i<=dimM1;i++) {
deltaTwo[i]=delta[i]<<1;
DeltaTwoSegmentbase[i] = delta[i] * SegmentbaseTwo[i];
DeltaFourSegmentbase[i]= delta[i] * SegmentbaseFour[i];
}
for (i=0;i<=dimM1;i++) {indextail[i]=0;}
valuePtail = valuePointhead =0;
maxtail=gridpoints[0]-delta[0];
for(;;) { // indextail
for (i=0,valuePointhead=0; i<=dimM1;i++) {
indexhead[i]=indextail[i]+delta[i]; /* Do not use -delta[i], as last
dimension must always be
+delta[] */
valuePointhead += indexhead[i] * segmentbase[i];
} // one point is given by indextail, the other by indexhead
for (;;) {// indexhead
forbid = false; // in case dim=1 ! (???, 21.2.01)
for (i=0; i<=dimM1; i++) { // for (i=1; ... ) should be enough...
if (forbid=(indexhead[i]<0)||(indexhead[i]>=gridpoints[i])){break;}
}
if (!forbid) {
long segtail,seghead;
for (tail=0; tail<maxtail; tail++) {
segtail = valuePtail+tail;
seghead = valuePointhead+tail;
for (segment=0;segment<totalpointsrepet;segment+=totalpoints) {
Real x;
x = characteristic(values[segtail+segment],
values[seghead+segment]);
res[low] += x;
sd[low] += x * x;
}
assert(low<*nbin);
n[low]++;
}
}
d=swapstart;
if (d<=dimM1) {
indexhead[d]-=deltaTwo[d];
valuePointhead-= DeltaTwoSegmentbase[d];
while ( (indexhead[d]<indextail[d]-delta[d]) || (delta[d]==0)) {
if (delta[d]!=0) {
// so, indexhead[d]<indextail[d]-delta[d];
// i.e.indexhead[d]=indextail[d]-3*delta[d]
valuePointhead += DeltaFourSegmentbase[d];
indexhead[d]=indextail[d]+delta[d];
}
d++;
if (d<=dimM1) {
indexhead[d]-=deltaTwo[d];
valuePointhead-=DeltaTwoSegmentbase[d];
} else break;
}
} else break;
if (d>dimM1) break;
} //for(;;), indexhead
d=1;
if (d<=dimM1) { // not satisfied for one dimensional data! ?
indextail[d]++; valuePtail+=segmentbase[d];
while (indextail[d]>=gridpoints[d]) {
valuePtail -= indextail[d] * segmentbase[d];
indextail[d]=0;
d++;
if (d<=dimM1) {
indextail[d]++; valuePtail+=segmentbase[d];
} else break;
}
} else break;
if (d>dimM1) break;
} // for(;;), indextail
} //for(;;), delta
if(GENERAL_PRINTLEVEL>=8) {
PRINTF("\n");
for(i=0;i<*nbin;i++){
PRINTF(" %d:%f(%f,%d) ",i,res[i]/(Real)(factor * n[i]),res[i],n[i]);
}
PRINTF(" YYY\n");
}
break;
default : assert(false);
}
} else {
//////////////////////////////////// ARBITRARY /////////////////////////////
totalpoints = *lx;
totalpointsrepet = totalpoints * *repet;
for (i=0;i<totalpoints;i++){ // to have a better performance for large
// data sets, group the data first into blocks
for (j=0;j<i;j++){
Real distSq;
for (distSq=0.0,d=0; d<=dimM1;d++) {
register Real dx;
dx=xx[d][i]-xx[d][j];
distSq += dx * dx;
}
// see also above
//distSq = sqrt(distSq); 26.2.
if ((distSq>BinSq[0]) && (distSq<=BinSq[*nbin])) {
register int up, cur,low;
low=0; up= *nbin; cur= halfnbin;
while (low!=up) {
if (distSq> BinSq[cur]) {low=cur;} else {up=cur-1;} // ( * ; * ]
cur=(up+low+1)/2;
}
for (segment=0;segment<totalpointsrepet;segment += totalpoints) {
Real x;
x = characteristic(values[i+segment],values[j+segment]);
res[low] += x;
sd[low] += x * x;
}
assert(low<*nbin);
n[low]++;
}
/* */
}
}
}
// ii is used in switch by this value: !!!!
ii=0; while( (ii<=*nbin) && (bin[ii]<0) ){ii++;}
ii--;
// 11.10.03: factor ohne *repet to be clearer
// case ii : separat behandelt, neu geschrieben
if (*repet>1) {
for (j=0;j<*nbin;j++) n[j] *= *repet;
}
for (i=0; i<ii; i++) {sd[i] = res[i]= RF_NAN;}
for (i++; i<*nbin; i++){
if (n[i]>0) {
res[i] /= (Real) (factor * n[i]);
if (n[i]>1)
sd[i] = sqrt(sd[i]/ (factor * factor * (Real) (n[i]-1))
- (Real) (n[i]) / (Real) (n[i]-1) * res[i] * res[i]);
else sd[i] = RF_INF;
} else {
res[i]= RF_NAN;
sd[i] = RF_INF;
}
}
i = ii; // sicherheitshalber -- eigentlich sollte unten kein i mehr auftauchen
switch (*charact) {
case 0 :
if ((ii<*nbin)&&(ii>=0)){
n[ii] += totalpointsrepet;
res[ii] /= (Real) (factor * n[ii]);
sd[ii] = sqrt(sd[ii] / (factor * factor * (Real) (n[ii]-1))
- (Real) (n[ii]) / (Real) (n[ii]-1) * res[ii] * res[ii]);
}
break;
case 1 : // E, calculating E(0) correctly, taking into account that the
// bin including 0 may include further points
if ((ii<*nbin)&&(ii>=0)){
long j; Real sum;
n[ii] *= factor; // * 2
for (j=0; j<totalpointsrepet; j++) {
res[ii] += values[j];
}
n[ii] += totalpointsrepet;
res[ii] = res[ii] / (Real) n[ii];
for (i=0; i<*nbin; i++) sd[i] = RF_NAN; // beste Loesung, da sonst
// nur Chaos gibt -- da sd falsch berechnet ist.
// siehe MPP package fuer die richtige Berechnung.
}
break;
case 2 : // kmm, calculating kmm(0} and dividing all the values by mean^2
Real mean, square, qu, x2;
for (j=0,mean=square=qu=0.0;j<totalpointsrepet;j++) {
mean += values[j];
square += (x2 = values[j]*values[j]);
qu += x2 * x2;
}
mean /= (Real) totalpointsrepet;
square /= (Real) totalpointsrepet;
if ((ii<*nbin)&&(ii>=0)){
n[ii] += totalpointsrepet;
res[ii]= (res[ii] + square) / (Real) n[ii]; // factor is 1
sd[ii] = sqrt((sd[ii] + qu) / ((Real) (n[ii]-1))
- (Real) (n[ii]) / (Real) (n[ii]-1) * res[ii] * res[ii]);
}
mean *= mean;
for (j=0; j<*nbin; j++) { res[j] /= mean; }
break;
}
if (BinSq!=NULL) free(BinSq);
return;
ErrorHandling:
PRINTF("Error: ");
switch (error) {
case TOOLS_MEMORYERROR :
PRINTF("Memory alloc failed in empiricalvariogram.\n"); break;
case TOOLS_XERROR :
PRINTF("The x coordinate may not be NULL.\n"); break;
case TOOLS_BIN_ERROR :
PRINTF("Bin components not an increasing sequence.\n"); break;
default : assert(false);
}
if (BinSq!=NULL) free(BinSq);
for (i=0;i<*nbin;i++){sd[i]=res[i]=RF_NAN;}
}

Computing file changes ...