Revision 6c38ebf6f9326fd2d7ebf1b95d9f73f684feb162 authored by Martin Schlather on 12 May 2004, 00:00:00 UTC, committed by Gabor Csardi on 12 May 2004, 00:00:00 UTC
1 parent b51fb7a
getNset.R
GetPracticalRange <- function(model,kappas=NULL) {
covnr <-
as.integer(.C("GetModelNr", as.character(model), as.integer(1),
nr = integer(1), PACKAGE="RandomFields")$nr)
if (covnr < 0) {
.C("PrintModelList", PACKAGE="RandomFields")
stop("given model cannot be (uniquely) identified from the above list")
}
if (length(kappas)!=.C("GetNrParameters", covnr, as.integer(1),
k = integer(1), PACKAGE="RandomFields", DUP=FALSE)$k)
stop("incorrect number of parameters!")
nat.scl <- double(1)
error <- integer(1)
.C("GetNaturalScaling",
as.integer(covnr),
as.double(kappas), ## not stable w.r.t. to changings !!
as.integer(11),
nat.scl,
error,
PACKAGE="RandomFields", DUP=FALSE)
if (error) stop("natural scaling could not be obtained")
return(1.0 / nat.scl)
}
GetMethodNames <- function() {
assign(".p",
.C("GetrfParameters", covmaxchar=integer(1), methodmaxchar=integer(1),
distrmaxchar=integer(1),
covnr=integer(1), methodnr=integer(1), distrnr=integer(1),
maxdim=integer(1), maxmodels=integer(1),
PACKAGE="RandomFields"))
l <- character(.p$methodnr)
for (i in 1:.p$methodnr) {
l[i] <- .C("GetMethodName", as.integer(i-1),
n=paste(rep(" ", .p$methodmaxchar), collapse=""),
PACKAGE="RandomFields")$n
}
return(l)
}
GetDistributionNames <- function() {
assign(".p",
.C("GetrfParameters", covmaxchar=integer(1), methodmaxchar=integer(1),
distrmaxchar=integer(1),
covnr=integer(1), methodnr=integer(1), distrnr=integer(1),
maxdim=integer(1), maxmodels=integer(1),
PACKAGE="RandomFields"))
l <- character(.p$distrnr)
for (i in 1:.p$distrnr) {
l[i] <- .C("GetDistrName", as.integer(i-1),
n=paste(rep(" ",.p$distrmaxchar), collapse=""),
PACKAGE="RandomFields")$n
}
return(l)
}
GetModelNames <- function() {
assign(".p",
.C("GetrfParameters", covmaxchar=integer(1), methodmaxchar=integer(1),
distrmaxchar=integer(1),
covnr=integer(1), methodnr=integer(1), distrnr=integer(1),
maxdim=integer(1), maxmodels=integer(1),
PACKAGE="RandomFields"))
l <- character(.p$covnr)
for (i in 1:.p$covnr) {
l[i] <- .C("GetModelName",as.integer(i-1),
n=paste(rep(" ",.p$covmaxchar), collapse=""),
PACKAGE="RandomFields")$n
}
return(l)
}
GetModelList <- function(abbr=TRUE) {
assign(".methods", GetMethodNames())
names <- GetModelNames()
methods <- .methods[.methods!="nugget"]
if (abbr) methods <- substr(methods, 1, if (is.logical(abbr)) 5 else abbr)
idx <- integer(length(names) * length(methods))
.C("GetModelList", idx, PACKAGE="RandomFields", DUP=FALSE)
t(matrix(as.logical(idx), ncol=length(names), dimnames=list(methods, names)))
}
parampositions <- function(model, param, print=TRUE) {
type <- if (!missing(param) && !is.null(param))
if (is.matrix(param)) "n" else "s" else "l"
old.model <- PrepareModel(model, param)
model <- PrepareModel(convert.to.readable(old.model))
if (length(old.model$param) != length(model$param))
stop("The model should be simplified beforehand")
model$param <- 1:length(model$param)
model$mean <- NA
model <- convert.to.readable(model, allowed=type)
model$method <- model$trend <- NULL
if (type=="l") {
if (print) str(model)
} else {
if (print) cat("model:", model$model, "\nparam: ")
if (type=="s") { # standard
NUGGET <- 3
if (is.finite(param[NUGGET]) && param[NUGGET]==0)
model$param[NUGGET] <- NA
if (print) cat(model$param, "\n")
} else { # nested
model$param[model$param==0] <- NA
if (length(model$param) !=
length(convert.to.readable(old.model, allow="n")$param))
stop("Model is too complex to be identified")
if (print) {
cat("\n")
print(model$param)
}
}
}
invisible(model)
}
"RFparameters" <- function (...) {
## do not add any temporary variable til ## **
## do not remove leading "." from .maxdim
assign(".methods", GetMethodNames())
assign(".p",
.C("GetrfParameters", covmaxchar=integer(1), methodmaxchar=integer(1),
distrmaxchar=integer(1),
covnr=integer(1), methodnr=integer(1), distrnr=integer(1),
maxdim=integer(1), maxmodels=integer(1),
PACKAGE="RandomFields"))
Storing <- integer(1)
PrintLevel <- integer(1)
PracticalRange <- integer(1)
## always logical returned
## PracticalRange also allows for being set to
## 0 : no practical range
## 1,11 : practical range, evaluated exactly (if given in RFCovfct.cc)
## 2,12 : approximative value (if given in RFCovfct.cc)
## 3,13 : rough guess (good enough for MLE) (if given in RFCovfct.cc)
## >10: and if nothing appropriate given in RFCovfct.cc then numerical approx.
pch <- as.character(" ")
CE.force <- integer(1)
CE.tolRe <- double(1)
CE.tolIm <- double(1)
CE.trials <- integer(1)
CE.mmin <- integer(.p$maxdim)
CE.userfft <- integer(1)
CE.strategy <- integer(1)
TBMCE.force <- integer(1)
TBMCE.tolRe <- double(1)
TBMCE.tolIm <- double(1)
TBMCE.trials <- integer(1)
TBMCE.mmin <- integer(.p$maxdim)
TBMCE.userfft <- integer(1)
TBMCE.strategy <- integer(1)
TBM.method <- integer(1)
TBM2.lines <- integer(1)
TBM2.linesimufactor <- double(1)
TBM2.linesimustep <- double(1)
TBM2.every <- integer(1)
TBM3D2.lines <- integer(1)
TBM3D2.linesimufactor <- double(1)
TBM3D2.linesimustep <- double(1)
TBM3D2.every <- integer(1)
TBM3D3.lines <- integer(1)
TBM3D3.linesimufactor <- double(1)
TBM3D3.linesimustep <- double(1)
TBM3D3.every <- integer(1)
spectral.lines <- integer(1)
spectral.grid <- integer(1)
direct.method <- integer(1)
direct.checkprecision <- integer(1)
direct.requiredprecision <- double(1)
direct.maxvariables <- integer(1)
MPP.approxzero <- double(1)
add.MPP.realisations <- double(1)
MPP.radius <- double(1)
maxstable.maxGauss <- double(1)
arg.list <- ls()
## **
## first element is the function name
parameters <- list(...)
for (m in 1:0) {
# m = 1 reading parameters
# m = 0 storing parameters
storage.mode(m) <- "integer"
## "SetParam" more complicated since pch is of character type
x <- .C("SetParam", m, Storing=Storing, PrintLevel=PrintLevel,
PracticalRange=PracticalRange, pch=pch, PACKAGE="RandomFields")
Storing <- x$Storing
PrintLevel <- x$PrintLevel
PracticalRange <- x$PracticalRange
pch <- x$pch
.C("SetParamCircEmbed", m, CE.force, CE.tolRe, CE.tolIm, CE.trials,
CE.mmin, CE.userfft, CE.strategy, PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamTBMCE", m, TBMCE.force, TBMCE.tolRe, TBMCE.tolIm, TBMCE.trials,
TBMCE.mmin, TBMCE.userfft, TBMCE.strategy,
PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamTBM2", m, TBM2.lines, TBM2.linesimufactor,
TBM2.linesimustep, TBM2.every, PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamTBM3D2", m, TBM3D2.lines, TBM3D2.linesimufactor,
TBM3D2.linesimustep, TBM3D2.every, PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamTBM3D3", m, TBM3D3.lines, TBM3D3.linesimufactor,
TBM3D3.linesimustep, TBM3D3.every, PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamTBM", m, TBM.method, PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamSpectral", m, spectral.lines, spectral.grid,
PACKAGE="RandomFields", DUP=FALSE)
.C("SetParamDirectGauss", m, direct.method, direct.checkprecision,
direct.requiredprecision, direct.maxvariables,
PACKAGE="RandomFields", DUP=FALSE)
.C("SetMPP", m, MPP.approxzero, add.MPP.realisations, MPP.radius,
PACKAGE="RandomFields", DUP=FALSE)
.C("SetExtremes", m, maxstable.maxGauss, PACKAGE="RandomFields", DUP=FALSE)
if (length(parameters)==0)
return(list(Storing=as.logical(Storing),
PrintLevel=PrintLevel,
PracticalRange=if (PracticalRange<=1)
as.logical(PracticalRange) else PracticalRange,
CE.force=as.logical(CE.force),
CE.mmin=CE.mmin,
CE.tolRe=CE.tolRe,
CE.tolIm=CE.tolIm,
CE.trials=CE.trials,
CE.userfft=as.logical(CE.userfft),
CE.strategy=CE.strategy,
direct.checkprecision=as.logical(direct.checkprecision),
direct.maxvariables=direct.maxvariables,
direct.method=direct.method,
direct.requiredprecision=direct.requiredprecision,
spectral.lines=spectral.lines,
spectral.grid=as.logical(spectral.grid),
TBMCE.force=as.logical(TBMCE.force),
TBMCE.mmin=TBMCE.mmin,
TBMCE.tolRe=TBMCE.tolRe,
TBMCE.tolIm=TBMCE.tolIm,
TBMCE.trials=TBMCE.trials,
TBMCE.userfft=as.logical(TBMCE.userfft),
TBMCE.strategy=TBMCE.strategy,
TBM2.lines=TBM2.lines,
TBM2.linesimufactor=TBM2.linesimufactor,
TBM2.linesimustep=TBM2.linesimustep,
TBM2.every=TBM2.every,
TBM3D2.lines=TBM3D2.lines,
TBM3D2.linesimufactor=TBM3D2.linesimufactor,
TBM3D2.linesimustep=TBM3D2.linesimustep,
TBM3D2.every=TBM3D2.every,
TBM3D3.lines=TBM3D3.lines,
TBM3D3.linesimufactor=TBM3D3.linesimufactor,
TBM3D3.linesimustep=TBM3D3.linesimustep,
TBM3D3.every=TBM3D3.every,
TBM.method=.methods[TBM.method+1],
MPP.approxzero=MPP.approxzero,
add.MPP.realisations=add.MPP.realisations,
MPP.radius=MPP.radius,
maxstable.maxGauss=maxstable.maxGauss,
pch=pch,
covmaxchar=.p$covmaxchar,
methodmaxchar=.p$methodmaxchar,
distrmaxchar=.p$distrmaxchar,
covnr=.p$covnr,
methodnr=.p$methodnr,
distrnr=.p$distrnr,
maxdim=.p$maxdim,
maxmodels=.p$maxmodels,
)
)
if (m==0) return(invisible(parameters))
## set to 0 since only one part of each pair might be non-zero
## this is then checked in RFtbm.cc, SetParamLines
TBM2.linesimufactor <- as.double(0)
TBM2.linesimustep <- as.double(0)
TBM3D2.linesimufactor <- as.double(0)
TBM3D2.linesimustep <- as.double(0)
TBM3D3.linesimufactor <- as.double(0)
TBM3D3.linesimustep <- as.double(0)
orig.name <- names(parameters)
if (is.null(orig.name) || (orig.name[1]=="")) {
txt <- "either a single unnamed list must be given or the parameters should be referenced by names"
if ((length(parameters)!=1)) stop(txt)
parameters <- parameters[[1]]
orig.name <- names(parameters)
if ((length(parameters) != sum(orig.name!="") ||
(length(parameters)==0))) stop(txt)
}
name <- arg.list[pmatch(orig.name, arg.list)]
if (any(is.na(name)))
stop("the following parameter(s) could not be matched: ",
paste(orig.name[is.na(name)], collapse=", "))
names(parameters) <- name
for (i in 1:length(parameters)) {
type <- storage.mode(get(name[i]))
## parameters[i] is not sufficient since user give expression,
## which have type "language"
v <- parameters[[i]]
if (name[i]=="TBM.method") v <- pmatch(v, .methods) - 1
if (switch(type,
character = !is.character(v),
integer = !is.finite(v) || (v != as.integer(v)),
double = !is.numeric(v)))
stop(paste("`", orig.name[i], "' is not ", type, sep=""))
len <- length(get(name[i]))
if (length(v) > len)
stop(paste("`", orig.name[i], "' is a too long vector", sep=""))
assign(name[i], rep(v, length=len))
eval(parse(text=paste("storage.mode(",name[i],") <- type")))
}
stopifnot(PracticalRange %in% c(FALSE, TRUE, 2, 3, 11, 12, 13))
}
}
"PrintModelList" <-function () {
.C("PrintModelList", PACKAGE="RandomFields")
invisible()
}
"PrintMethodList" <-function () {
.C("PrintMethods", PACKAGE="RandomFields")
invisible()
}
parameter.range <- function(model, dim){
if (length(model)==0) stop("model not given")
stopifnot(is.character(model))
nr <- .C("GetModelNr", as.character(model), as.integer(1), nr=integer(1),
PACKAGE="RandomFields")$nr
if (nr < 0) {
.C("PrintModelList", PACKAGE="RandomFields")
stop("given model cannot be (uniquely) identified from the above list")
}
storage.mode(nr) = "integer"
storage.mode(dim) = "integer"
l <- as.integer(4 * .C("GetNrParameters", nr, as.integer(1), k=integer(1),
PACKAGE="RandomFields")$k)
r <- list()
r$theoretical <- list()
r$practical <- list()
index <- as.integer(1)
while (index>0) {
R <- double(l)
index.orig <- as.integer(index) ## without index.orig points to index,
## what is a bug in R -- do report! -- Check if bug is still there
.C("GetRange", nr, dim, index, R, l, PACKAGE="RandomFields", DUP=FALSE)
R <- matrix(R, nrow=4)
r$theoretical[[index.orig]] <- R[1:2, , drop=FALSE]
r$practical[[index.orig]] <- R[3:4, ,drop=FALSE]
}
if (index <= -2) {
if (index==-2) r <- NaN ## stop("dimension not correct")
else stop(paste("error: inform maintainer (error nr.",index,")"))
}
return(if (is.list(r) && ncol(r$theoretical[[1]])==0) NULL else r)
}

Computing file changes ...