Revision 6c65bf1743a3d558e5806597c60b532160a37655 authored by akankshamahajan on 07 March 2023, 23:07:49 UTC, committed by Facebook GitHub Bot on 07 March 2023, 23:07:49 UTC
Summary:
Internally, the benchmark is going on hang state whereas when run on same host manually, it passes. Decrease the duration to 5s to figure out how much time it is taking to complete the benchmark.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11283

Test Plan: Ran manually internally

Reviewed By: hx235

Differential Revision: D43882260

Pulled By: akankshamahajan15

fbshipit-source-id: 9ea44164773d4df4fc05cd817b7e011426c4d428
1 parent e010732
Raw File
db_stress_common.h
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// The test uses an array to compare against values written to the database.
// Keys written to the array are in 1:1 correspondence to the actual values in
// the database according to the formula in the function GenerateValue.

// Space is reserved in the array from 0 to FLAGS_max_key and values are
// randomly written/deleted/read from those positions. During verification we
// compare all the positions in the array. To shorten/elongate the running
// time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread,
// (sometimes also FLAGS_threads).
//
// NOTE that if FLAGS_test_batches_snapshots is set, the test will have
// different behavior. See comment of the flag for details.

#ifdef GFLAGS
#pragma once
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

#include <algorithm>
#include <array>
#include <chrono>
#include <cinttypes>
#include <exception>
#include <queue>
#include <thread>

#include "db/db_impl/db_impl.h"
#include "db/version_set.h"
#include "db_stress_tool/db_stress_env_wrapper.h"
#include "db_stress_tool/db_stress_listener.h"
#include "db_stress_tool/db_stress_shared_state.h"
#include "db_stress_tool/db_stress_test_base.h"
#include "logging/logging.h"
#include "monitoring/histogram.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/env.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/utilities/backup_engine.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/db_ttl.h"
#include "rocksdb/utilities/debug.h"
#include "rocksdb/utilities/options_util.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "rocksdb/write_batch.h"
#include "test_util/testutil.h"
#include "util/coding.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/string_util.h"
#include "utilities/blob_db/blob_db.h"
#include "utilities/fault_injection_fs.h"
#include "utilities/merge_operators.h"

using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;

DECLARE_uint64(seed);
DECLARE_bool(read_only);
DECLARE_int64(max_key);
DECLARE_double(hot_key_alpha);
DECLARE_int32(max_key_len);
DECLARE_string(key_len_percent_dist);
DECLARE_int32(key_window_scale_factor);
DECLARE_int32(column_families);
DECLARE_string(options_file);
DECLARE_int64(active_width);
DECLARE_bool(test_batches_snapshots);
DECLARE_bool(atomic_flush);
DECLARE_int32(manual_wal_flush_one_in);
DECLARE_int32(lock_wal_one_in);
DECLARE_bool(test_cf_consistency);
DECLARE_bool(test_multi_ops_txns);
DECLARE_int32(threads);
DECLARE_int32(ttl);
DECLARE_int32(value_size_mult);
DECLARE_int32(compaction_readahead_size);
DECLARE_bool(enable_pipelined_write);
DECLARE_bool(verify_before_write);
DECLARE_bool(histogram);
DECLARE_bool(destroy_db_initially);
DECLARE_bool(verbose);
DECLARE_bool(progress_reports);
DECLARE_uint64(db_write_buffer_size);
DECLARE_int32(write_buffer_size);
DECLARE_int32(max_write_buffer_number);
DECLARE_int32(min_write_buffer_number_to_merge);
DECLARE_int32(max_write_buffer_number_to_maintain);
DECLARE_int64(max_write_buffer_size_to_maintain);
DECLARE_double(memtable_prefix_bloom_size_ratio);
DECLARE_bool(memtable_whole_key_filtering);
DECLARE_int32(open_files);
DECLARE_int64(compressed_cache_size);
DECLARE_int32(compressed_cache_numshardbits);
DECLARE_int32(compaction_style);
DECLARE_int32(compaction_pri);
DECLARE_int32(num_levels);
DECLARE_int32(level0_file_num_compaction_trigger);
DECLARE_int32(level0_slowdown_writes_trigger);
DECLARE_int32(level0_stop_writes_trigger);
DECLARE_int32(block_size);
DECLARE_int32(format_version);
DECLARE_int32(index_block_restart_interval);
DECLARE_bool(disable_auto_compactions);
DECLARE_int32(max_background_compactions);
DECLARE_int32(num_bottom_pri_threads);
DECLARE_int32(compaction_thread_pool_adjust_interval);
DECLARE_int32(compaction_thread_pool_variations);
DECLARE_int32(max_background_flushes);
DECLARE_int32(universal_size_ratio);
DECLARE_int32(universal_min_merge_width);
DECLARE_int32(universal_max_merge_width);
DECLARE_int32(universal_max_size_amplification_percent);
DECLARE_int32(clear_column_family_one_in);
DECLARE_int32(get_live_files_one_in);
DECLARE_int32(get_sorted_wal_files_one_in);
DECLARE_int32(get_current_wal_file_one_in);
DECLARE_int32(set_options_one_in);
DECLARE_int32(set_in_place_one_in);
DECLARE_int64(cache_size);
DECLARE_int32(cache_numshardbits);
DECLARE_bool(cache_index_and_filter_blocks);
DECLARE_bool(charge_compression_dictionary_building_buffer);
DECLARE_bool(charge_filter_construction);
DECLARE_bool(charge_table_reader);
DECLARE_bool(charge_file_metadata);
DECLARE_bool(charge_blob_cache);
DECLARE_int32(top_level_index_pinning);
DECLARE_int32(partition_pinning);
DECLARE_int32(unpartitioned_pinning);
DECLARE_string(cache_type);
DECLARE_uint64(subcompactions);
DECLARE_uint64(periodic_compaction_seconds);
DECLARE_uint64(compaction_ttl);
DECLARE_bool(fifo_allow_compaction);
DECLARE_bool(allow_concurrent_memtable_write);
DECLARE_double(experimental_mempurge_threshold);
DECLARE_bool(enable_write_thread_adaptive_yield);
DECLARE_int32(reopen);
DECLARE_double(bloom_bits);
DECLARE_int32(ribbon_starting_level);
DECLARE_bool(partition_filters);
DECLARE_bool(optimize_filters_for_memory);
DECLARE_bool(detect_filter_construct_corruption);
DECLARE_int32(index_type);
DECLARE_int32(data_block_index_type);
DECLARE_string(db);
DECLARE_string(secondaries_base);
DECLARE_bool(test_secondary);
DECLARE_string(expected_values_dir);
DECLARE_bool(verify_checksum);
DECLARE_bool(mmap_read);
DECLARE_bool(mmap_write);
DECLARE_bool(use_direct_reads);
DECLARE_bool(use_direct_io_for_flush_and_compaction);
DECLARE_bool(mock_direct_io);
DECLARE_bool(statistics);
DECLARE_bool(sync);
DECLARE_bool(use_fsync);
DECLARE_uint64(stats_dump_period_sec);
DECLARE_uint64(bytes_per_sync);
DECLARE_uint64(wal_bytes_per_sync);
DECLARE_int32(kill_random_test);
DECLARE_string(kill_exclude_prefixes);
DECLARE_bool(disable_wal);
DECLARE_uint64(recycle_log_file_num);
DECLARE_int64(target_file_size_base);
DECLARE_int32(target_file_size_multiplier);
DECLARE_uint64(max_bytes_for_level_base);
DECLARE_double(max_bytes_for_level_multiplier);
DECLARE_int32(range_deletion_width);
DECLARE_uint64(rate_limiter_bytes_per_sec);
DECLARE_bool(rate_limit_bg_reads);
DECLARE_bool(rate_limit_user_ops);
DECLARE_bool(rate_limit_auto_wal_flush);
DECLARE_uint64(sst_file_manager_bytes_per_sec);
DECLARE_uint64(sst_file_manager_bytes_per_truncate);
DECLARE_bool(use_txn);
DECLARE_uint64(txn_write_policy);
DECLARE_bool(unordered_write);
DECLARE_int32(backup_one_in);
DECLARE_uint64(backup_max_size);
DECLARE_int32(checkpoint_one_in);
DECLARE_int32(ingest_external_file_one_in);
DECLARE_int32(ingest_external_file_width);
DECLARE_int32(compact_files_one_in);
DECLARE_int32(compact_range_one_in);
DECLARE_int32(mark_for_compaction_one_file_in);
DECLARE_int32(flush_one_in);
DECLARE_int32(pause_background_one_in);
DECLARE_int32(compact_range_width);
DECLARE_int32(acquire_snapshot_one_in);
DECLARE_bool(compare_full_db_state_snapshot);
DECLARE_uint64(snapshot_hold_ops);
DECLARE_bool(long_running_snapshots);
DECLARE_bool(use_multiget);
DECLARE_int32(readpercent);
DECLARE_int32(prefixpercent);
DECLARE_int32(writepercent);
DECLARE_int32(delpercent);
DECLARE_int32(delrangepercent);
DECLARE_int32(nooverwritepercent);
DECLARE_int32(iterpercent);
DECLARE_uint64(num_iterations);
DECLARE_int32(customopspercent);
DECLARE_string(compression_type);
DECLARE_string(bottommost_compression_type);
DECLARE_int32(compression_max_dict_bytes);
DECLARE_int32(compression_zstd_max_train_bytes);
DECLARE_int32(compression_parallel_threads);
DECLARE_uint64(compression_max_dict_buffer_bytes);
DECLARE_bool(compression_use_zstd_dict_trainer);
DECLARE_string(checksum_type);
DECLARE_string(env_uri);
DECLARE_string(fs_uri);
DECLARE_uint64(ops_per_thread);
DECLARE_uint64(log2_keys_per_lock);
DECLARE_uint64(max_manifest_file_size);
DECLARE_bool(in_place_update);
DECLARE_string(memtablerep);
DECLARE_int32(prefix_size);
DECLARE_bool(use_merge);
DECLARE_uint32(use_put_entity_one_in);
DECLARE_bool(use_full_merge_v1);
DECLARE_int32(sync_wal_one_in);
DECLARE_bool(avoid_unnecessary_blocking_io);
DECLARE_bool(write_dbid_to_manifest);
DECLARE_bool(avoid_flush_during_recovery);
DECLARE_uint64(max_write_batch_group_size_bytes);
DECLARE_bool(level_compaction_dynamic_level_bytes);
DECLARE_int32(verify_checksum_one_in);
DECLARE_int32(verify_db_one_in);
DECLARE_int32(continuous_verification_interval);
DECLARE_int32(get_property_one_in);
DECLARE_string(file_checksum_impl);

// Options for StackableDB-based BlobDB
DECLARE_bool(use_blob_db);
DECLARE_uint64(blob_db_min_blob_size);
DECLARE_uint64(blob_db_bytes_per_sync);
DECLARE_uint64(blob_db_file_size);
DECLARE_bool(blob_db_enable_gc);
DECLARE_double(blob_db_gc_cutoff);

// Options for integrated BlobDB
DECLARE_bool(allow_setting_blob_options_dynamically);
DECLARE_bool(enable_blob_files);
DECLARE_uint64(min_blob_size);
DECLARE_uint64(blob_file_size);
DECLARE_string(blob_compression_type);
DECLARE_bool(enable_blob_garbage_collection);
DECLARE_double(blob_garbage_collection_age_cutoff);
DECLARE_double(blob_garbage_collection_force_threshold);
DECLARE_uint64(blob_compaction_readahead_size);
DECLARE_int32(blob_file_starting_level);
DECLARE_bool(use_blob_cache);
DECLARE_bool(use_shared_block_and_blob_cache);
DECLARE_uint64(blob_cache_size);
DECLARE_int32(blob_cache_numshardbits);
DECLARE_int32(prepopulate_blob_cache);

DECLARE_int32(approximate_size_one_in);
DECLARE_bool(sync_fault_injection);

DECLARE_bool(best_efforts_recovery);
DECLARE_bool(skip_verifydb);
DECLARE_bool(enable_compaction_filter);
DECLARE_bool(paranoid_file_checks);
DECLARE_bool(fail_if_options_file_error);
DECLARE_uint64(batch_protection_bytes_per_key);
DECLARE_uint32(memtable_protection_bytes_per_key);

DECLARE_uint64(user_timestamp_size);
DECLARE_string(secondary_cache_uri);
DECLARE_int32(secondary_cache_fault_one_in);

DECLARE_int32(prepopulate_block_cache);

DECLARE_bool(two_write_queues);
DECLARE_bool(use_only_the_last_commit_time_batch_for_recovery);
DECLARE_uint64(wp_snapshot_cache_bits);
DECLARE_uint64(wp_commit_cache_bits);

DECLARE_bool(adaptive_readahead);
DECLARE_bool(async_io);
DECLARE_string(wal_compression);
DECLARE_bool(verify_sst_unique_id_in_manifest);

DECLARE_int32(create_timestamped_snapshot_one_in);

DECLARE_bool(allow_data_in_errors);

// Tiered storage
DECLARE_bool(enable_tiered_storage);  // set last_level_temperature
DECLARE_int64(preclude_last_level_data_seconds);
DECLARE_int64(preserve_internal_time_seconds);

DECLARE_int32(verify_iterator_with_expected_state_one_in);
DECLARE_bool(preserve_unverified_changes);

DECLARE_uint64(readahead_size);
DECLARE_uint64(initial_auto_readahead_size);
DECLARE_uint64(max_auto_readahead_size);
DECLARE_uint64(num_file_reads_for_auto_readahead);
DECLARE_bool(use_io_uring);

constexpr long KB = 1024;
constexpr int kRandomValueMaxFactor = 3;
constexpr int kValueMaxLen = 100;

// wrapped posix environment
extern ROCKSDB_NAMESPACE::Env* db_stress_env;
extern ROCKSDB_NAMESPACE::Env* db_stress_listener_env;
extern std::shared_ptr<ROCKSDB_NAMESPACE::FaultInjectionTestFS> fault_fs_guard;

extern enum ROCKSDB_NAMESPACE::CompressionType compression_type_e;
extern enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e;
extern enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e;

enum RepFactory { kSkipList, kHashSkipList, kVectorRep };

inline enum RepFactory StringToRepFactory(const char* ctype) {
  assert(ctype);

  if (!strcasecmp(ctype, "skip_list"))
    return kSkipList;
  else if (!strcasecmp(ctype, "prefix_hash"))
    return kHashSkipList;
  else if (!strcasecmp(ctype, "vector"))
    return kVectorRep;

  fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
  return kSkipList;
}

extern enum RepFactory FLAGS_rep_factory;

namespace ROCKSDB_NAMESPACE {
inline enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
    const char* ctype) {
  assert(ctype);

  ROCKSDB_NAMESPACE::CompressionType ret_compression_type;

  if (!strcasecmp(ctype, "disable")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kDisableCompressionOption;
  } else if (!strcasecmp(ctype, "none")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kNoCompression;
  } else if (!strcasecmp(ctype, "snappy")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
  } else if (!strcasecmp(ctype, "zlib")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kZlibCompression;
  } else if (!strcasecmp(ctype, "bzip2")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kBZip2Compression;
  } else if (!strcasecmp(ctype, "lz4")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kLZ4Compression;
  } else if (!strcasecmp(ctype, "lz4hc")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kLZ4HCCompression;
  } else if (!strcasecmp(ctype, "xpress")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kXpressCompression;
  } else if (!strcasecmp(ctype, "zstd")) {
    ret_compression_type = ROCKSDB_NAMESPACE::kZSTD;
  } else {
    fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
    ret_compression_type =
        ROCKSDB_NAMESPACE::kSnappyCompression;  // default value
  }
  if (ret_compression_type != ROCKSDB_NAMESPACE::kDisableCompressionOption &&
      !CompressionTypeSupported(ret_compression_type)) {
    // Use no compression will be more portable but considering this is
    // only a stress test and snappy is widely available. Use snappy here.
    ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
  }
  return ret_compression_type;
}

inline enum ROCKSDB_NAMESPACE::ChecksumType StringToChecksumType(
    const char* ctype) {
  assert(ctype);
  auto iter = ROCKSDB_NAMESPACE::checksum_type_string_map.find(ctype);
  if (iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end()) {
    return iter->second;
  }
  fprintf(stderr, "Cannot parse checksum type '%s'\n", ctype);
  return ROCKSDB_NAMESPACE::kCRC32c;
}

inline std::string ChecksumTypeToString(ROCKSDB_NAMESPACE::ChecksumType ctype) {
  auto iter = std::find_if(
      ROCKSDB_NAMESPACE::checksum_type_string_map.begin(),
      ROCKSDB_NAMESPACE::checksum_type_string_map.end(),
      [&](const std::pair<std::string, ROCKSDB_NAMESPACE::ChecksumType>&
              name_and_enum_val) { return name_and_enum_val.second == ctype; });
  assert(iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end());
  return iter->first;
}

inline std::vector<std::string> SplitString(std::string src) {
  std::vector<std::string> ret;
  if (src.empty()) {
    return ret;
  }
  size_t pos = 0;
  size_t pos_comma;
  while ((pos_comma = src.find(',', pos)) != std::string::npos) {
    ret.push_back(src.substr(pos, pos_comma - pos));
    pos = pos_comma + 1;
  }
  ret.push_back(src.substr(pos, src.length()));
  return ret;
}

#ifdef _MSC_VER
#pragma warning(push)
// truncation of constant value on static_cast
#pragma warning(disable : 4309)
#endif
inline bool GetNextPrefix(const ROCKSDB_NAMESPACE::Slice& src, std::string* v) {
  std::string ret = src.ToString();
  for (int i = static_cast<int>(ret.size()) - 1; i >= 0; i--) {
    if (ret[i] != static_cast<char>(255)) {
      ret[i] = ret[i] + 1;
      break;
    } else if (i != 0) {
      ret[i] = 0;
    } else {
      // all FF. No next prefix
      return false;
    }
  }
  *v = ret;
  return true;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif

// Append `val` to `*key` in fixed-width big-endian format
extern inline void AppendIntToString(uint64_t val, std::string* key) {
  // PutFixed64 uses little endian
  PutFixed64(key, val);
  // Reverse to get big endian
  char* int_data = &((*key)[key->size() - sizeof(uint64_t)]);
  for (size_t i = 0; i < sizeof(uint64_t) / 2; ++i) {
    std::swap(int_data[i], int_data[sizeof(uint64_t) - 1 - i]);
  }
}

// A struct for maintaining the parameters for generating variable length keys
struct KeyGenContext {
  // Number of adjacent keys in one cycle of key lengths
  uint64_t window;
  // Number of keys of each possible length in a given window
  std::vector<uint64_t> weights;
};
extern KeyGenContext key_gen_ctx;

// Generate a variable length key string from the given int64 val. The
// order of the keys is preserved. The key could be anywhere from 8 to
// max_key_len * 8 bytes.
// The algorithm picks the length based on the
// offset of the val within a configured window and the distribution of the
// number of keys of various lengths in that window. For example, if x, y, x are
// the weights assigned to each possible key length, the keys generated would be
// - {0}...{x-1}
// {(x-1),0}..{(x-1),(y-1)},{(x-1),(y-1),0}..{(x-1),(y-1),(z-1)} and so on.
// Additionally, a trailer of 0-7 bytes could be appended.
extern inline std::string Key(int64_t val) {
  uint64_t window = key_gen_ctx.window;
  size_t levels = key_gen_ctx.weights.size();
  std::string key;
  // Over-reserve and for now do not bother `shrink_to_fit()` since the key
  // strings are transient.
  key.reserve(FLAGS_max_key_len * 8);

  uint64_t window_idx = static_cast<uint64_t>(val) / window;
  uint64_t offset = static_cast<uint64_t>(val) % window;
  for (size_t level = 0; level < levels; ++level) {
    uint64_t weight = key_gen_ctx.weights[level];
    uint64_t pfx;
    if (level == 0) {
      pfx = window_idx * weight;
    } else {
      pfx = 0;
    }
    pfx += offset >= weight ? weight - 1 : offset;
    AppendIntToString(pfx, &key);
    if (offset < weight) {
      // Use the bottom 3 bits of offset as the number of trailing 'x's in the
      // key. If the next key is going to be of the next level, then skip the
      // trailer as it would break ordering. If the key length is already at
      // max, skip the trailer.
      if (offset < weight - 1 && level < levels - 1) {
        size_t trailer_len = offset & 0x7;
        key.append(trailer_len, 'x');
      }
      break;
    }
    offset -= weight;
  }

  return key;
}

// Given a string key, map it to an index into the expected values buffer
extern inline bool GetIntVal(std::string big_endian_key, uint64_t* key_p) {
  size_t size_key = big_endian_key.size();
  std::vector<uint64_t> prefixes;

  assert(size_key <= key_gen_ctx.weights.size() * sizeof(uint64_t));

  std::string little_endian_key;
  little_endian_key.resize(size_key);
  for (size_t start = 0; start + sizeof(uint64_t) <= size_key;
       start += sizeof(uint64_t)) {
    size_t end = start + sizeof(uint64_t);
    for (size_t i = 0; i < sizeof(uint64_t); ++i) {
      little_endian_key[start + i] = big_endian_key[end - 1 - i];
    }
    Slice little_endian_slice =
        Slice(&little_endian_key[start], sizeof(uint64_t));
    uint64_t pfx;
    if (!GetFixed64(&little_endian_slice, &pfx)) {
      return false;
    }
    prefixes.emplace_back(pfx);
  }

  uint64_t key = 0;
  for (size_t i = 0; i < prefixes.size(); ++i) {
    uint64_t pfx = prefixes[i];
    key += (pfx / key_gen_ctx.weights[i]) * key_gen_ctx.window +
           pfx % key_gen_ctx.weights[i];
    if (i < prefixes.size() - 1) {
      // The encoding writes a `key_gen_ctx.weights[i] - 1` that counts for
      // `key_gen_ctx.weights[i]` when there are more prefixes to come. So we
      // need to add back the one here as we're at a non-last prefix.
      ++key;
    }
  }
  *key_p = key;
  return true;
}

// Given a string prefix, map it to the first corresponding index in the
// expected values buffer.
inline bool GetFirstIntValInPrefix(std::string big_endian_prefix,
                                   uint64_t* key_p) {
  size_t size_key = big_endian_prefix.size();
  // Pad with zeros to make it a multiple of 8. This function may be called
  // with a prefix, in which case we return the first index that falls
  // inside or outside that prefix, dependeing on whether the prefix is
  // the start of upper bound of a scan
  unsigned int pad = sizeof(uint64_t) - (size_key % sizeof(uint64_t));
  if (pad < sizeof(uint64_t)) {
    big_endian_prefix.append(pad, '\0');
  }
  return GetIntVal(std::move(big_endian_prefix), key_p);
}

extern inline uint64_t GetPrefixKeyCount(const std::string& prefix,
                                         const std::string& ub) {
  uint64_t start = 0;
  uint64_t end = 0;

  if (!GetFirstIntValInPrefix(prefix, &start) ||
      !GetFirstIntValInPrefix(ub, &end)) {
    return 0;
  }

  return end - start;
}

extern inline std::string StringToHex(const std::string& str) {
  std::string result = "0x";
  result.append(Slice(str).ToString(true));
  return result;
}

// Unified output format for double parameters
extern inline std::string FormatDoubleParam(double param) {
  return std::to_string(param);
}

// Make sure that double parameter is a value we can reproduce by
// re-inputting the value printed.
extern inline void SanitizeDoubleParam(double* param) {
  *param = std::atof(FormatDoubleParam(*param).c_str());
}

extern void PoolSizeChangeThread(void* v);

extern void DbVerificationThread(void* v);

extern void TimestampedSnapshotsThread(void* v);

extern void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz);

extern int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration);

extern std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
                                          uint64_t iteration);

extern size_t GenerateValue(uint32_t rand, char* v, size_t max_sz);
extern uint32_t GetValueBase(Slice s);

extern WideColumns GenerateWideColumns(uint32_t value_base, const Slice& slice);
extern WideColumns GenerateExpectedWideColumns(uint32_t value_base,
                                               const Slice& slice);

extern StressTest* CreateCfConsistencyStressTest();
extern StressTest* CreateBatchedOpsStressTest();
extern StressTest* CreateNonBatchedOpsStressTest();
extern StressTest* CreateMultiOpsTxnsStressTest();
extern void CheckAndSetOptionsForMultiOpsTxnStressTest();
extern void InitializeHotKeyGenerator(double alpha);
extern int64_t GetOneHotKeyID(double rand_seed, int64_t max_key);

extern std::string GetNowNanos();

std::shared_ptr<FileChecksumGenFactory> GetFileChecksumImpl(
    const std::string& name);

Status DeleteFilesInDirectory(const std::string& dirname);
Status SaveFilesInDirectory(const std::string& src_dirname,
                            const std::string& dst_dirname);
Status DestroyUnverifiedSubdir(const std::string& dirname);
Status InitUnverifiedSubdir(const std::string& dirname);
}  // namespace ROCKSDB_NAMESPACE
#endif  // GFLAGS
back to top