Revision 6e23543bc477eb46e5fc8d5cab119190b990ed7c authored by Keno Fischer on 24 November 2023, 15:26:51 UTC, committed by GitHub on 24 November 2023, 15:26:51 UTC
This is cherry-picked from #52245. This is an independent bugfix, and
looks like #52245 might need another round of discussion.

There were two separate off-by-1's in the codegen code that is trying to
detect assignments to slots inside try/catch regions.

First, it was asking to include the value of the catch label, which is
actually the first statement *not* in the try region. Second, there was
a confusion of 0 and 1 based indexing in the iteration bounds. The end
result of this was that the code was also looking at the first two
statements of the catch region.

This wasn't a problem before #52245 (other than a potentially
over-conservative marking of some slots as volatile), because our catch
blocks always had at least two statements (a :leave and a terminator),
but with the `:leave` change, it is possible to have catch blocks with
only one statement. If these happened to be at the end of the function,
things would blow up.

As a side node, this code isn't particularly sound, because it assumes
that try/catch regions are lexical, which they are not. The assumption
happens to work out ok for the code we generate in the frontend and
optimized IR doesn't have slots, so we don't use this code, but it is
not in general sound.
1 parent a386cd1
Raw File
builtins.c
// This file is a part of Julia. License is MIT: https://julialang.org/license

/*
  implementations of built-in functions
*/
#include "platform.h"

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <setjmp.h>
#include <sys/types.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#if defined(_OS_WINDOWS_)
#include <malloc.h>
#else
#include <unistd.h>
#endif
#include <ctype.h>
#include "julia.h"
#include "julia_internal.h"
#include "builtin_proto.h"
#include "intrinsics.h"
#include "julia_assert.h"

#ifdef __cplusplus
extern "C" {
#endif

// egal and object_id ---------------------------------------------------------

static int bits_equal(const void *a, const void *b, int sz) JL_NOTSAFEPOINT
{
    switch (sz) {
    case 1:  return *(uint8_t*)a == *(uint8_t*)b;
        // Let compiler constant folds the following, though we may not know alignment of them
    case 2:  return memcmp(a, b, 2) == 0;
    case 4:  return memcmp(a, b, 4) == 0;
    case 8:  return memcmp(a, b, 8) == 0;
    default: return memcmp(a, b, sz) == 0;
    }
}

// The frequently used jl_egal function deserves special attention when it
// comes to performance which is made challenging by the fact that the
// function has to handle quite a few different cases and because it is
// called recursively.  To optimize performance many special cases are
// handle with separate comparisons which can dramatically reduce the run
// time of the function.  The compiler can translate these simple tests
// with little effort, e.g., few registers are used.
//
// The complex cases require more effort and more registers to be translated
// efficiently.  The effected cases include comparing tuples and fields.  If
// the code to perform these operation would be inlined in the jl_egal
// function then the compiler would generate at the or close to the top of
// the function a prologue which saves all the callee-save registers and at
// the end the respective epilogue.  The result is that even the fast cases
// are slowed down.
//
// The solution is to keep the code in jl_egal simple and split out the
// (more) complex cases into their own functions which are marked with
// NOINLINE.
static int NOINLINE compare_svec(jl_svec_t *a, jl_svec_t *b) JL_NOTSAFEPOINT
{
    size_t i, l = jl_svec_len(a);
    if (l != jl_svec_len(b))
        return 0;
    for (i = 0; i < l; i++) {
        if (!jl_egal(jl_svecref(a, i), jl_svecref(b, i)))
            return 0;
    }
    return 1;
}

// See comment above for an explanation of NOINLINE.
static int NOINLINE compare_fields(const jl_value_t *a, const jl_value_t *b, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
    size_t nf = jl_datatype_nfields(dt);
    // npointers is used at end, but fetched here for locality with nfields.
    int npointers = ((jl_datatype_t*)dt)->layout->npointers;
    for (size_t f = 0; f < nf; f++) {
        size_t offs = jl_field_offset(dt, f);
        char *ao = (char*)a + offs;
        char *bo = (char*)b + offs;
        if (jl_field_isptr(dt, f)) {
            // Save ptr recursion until the end -- only recurse if otherwise equal
            // Note that we also skip comparing the pointers for null here, because
            // null fields are rare so it can save CPU to delay this read too.
            continue;
        }
        else {
            jl_datatype_t *ft = (jl_datatype_t*)jl_field_type_concrete(dt, f);
            if (jl_is_uniontype(ft)) {
                size_t idx = jl_field_size(dt, f) - 1;
                uint8_t asel = ((uint8_t*)ao)[idx];
                uint8_t bsel = ((uint8_t*)bo)[idx];
                if (asel != bsel)
                    return 0;
                ft = (jl_datatype_t*)jl_nth_union_component((jl_value_t*)ft, asel);
            }
            else if (ft->layout->first_ptr >= 0) {
                // If the field is a inline immutable that can be undef
                // we need to check for undef first since undef struct
                // may have fields that are different but should still be treated as equal.
                int32_t idx = ft->layout->first_ptr;
                jl_value_t *ptra = ((jl_value_t**)ao)[idx];
                jl_value_t *ptrb = ((jl_value_t**)bo)[idx];
                if ((ptra == NULL) != (ptrb == NULL)) {
                    return 0;
                }
                else if (ptra == NULL) { // implies ptrb == NULL
                    continue; // skip this field (it is #undef)
                }
            }
            if (!ft->layout->flags.haspadding) {
                if (!bits_equal(ao, bo, ft->layout->size))
                    return 0;
            }
            else {
                assert(jl_datatype_nfields(ft) > 0);
                if (!compare_fields((jl_value_t*)ao, (jl_value_t*)bo, ft))
                    return 0;
            }
        }
    }
    // If we've gotten here, the objects are bitwise equal, besides their pointer fields.
    // Now, we will recurse into jl_egal for the pointed-to elements, which might be
    // arbitrarily expensive.
    for (size_t p = 0; p < npointers; p++) {
        size_t offs = jl_ptr_offset(dt, p);
        jl_value_t *af = ((jl_value_t**)a)[offs];
        jl_value_t *bf = ((jl_value_t**)b)[offs];
        if (af != bf) {
            if (af == NULL || bf == NULL)
                return 0;
            if (!jl_egal(af, bf))
                return 0;
        }
    }
    return 1;
}

static int egal_types(const jl_value_t *a, const jl_value_t *b, jl_typeenv_t *env, int tvar_names) JL_NOTSAFEPOINT
{
    if (a == b)
        return 1;
    uintptr_t dtag = jl_typetagof(a);
    if (dtag != jl_typetagof(b))
        return 0;
    if (dtag == jl_datatype_tag << 4) {
        jl_datatype_t *dta = (jl_datatype_t*)a;
        jl_datatype_t *dtb = (jl_datatype_t*)b;
        if (dta->name != dtb->name)
            return 0;
        size_t i, l = jl_nparams(dta);
        if (jl_nparams(dtb) != l)
            return 0;
        for (i = 0; i < l; i++) {
            if (!egal_types(jl_tparam(dta, i), jl_tparam(dtb, i), env, tvar_names))
                return 0;
        }
        return 1;
    }
    if (dtag == jl_tvar_tag << 4) {
        jl_typeenv_t *pe = env;
        while (pe != NULL) {
            if (pe->var == (jl_tvar_t*)a)
                return pe->val == b;
            pe = pe->prev;
        }
        return 0;
    }
    if (dtag == jl_unionall_tag << 4) {
        jl_unionall_t *ua = (jl_unionall_t*)a;
        jl_unionall_t *ub = (jl_unionall_t*)b;
        if (tvar_names && ua->var->name != ub->var->name)
            return 0;
        if (!(egal_types(ua->var->lb, ub->var->lb, env, tvar_names) && egal_types(ua->var->ub, ub->var->ub, env, tvar_names)))
            return 0;
        jl_typeenv_t e = { ua->var, (jl_value_t*)ub->var, env };
        return egal_types(ua->body, ub->body, &e, tvar_names);
    }
    if (dtag == jl_uniontype_tag << 4) {
        return egal_types(((jl_uniontype_t*)a)->a, ((jl_uniontype_t*)b)->a, env, tvar_names) &&
            egal_types(((jl_uniontype_t*)a)->b, ((jl_uniontype_t*)b)->b, env, tvar_names);
    }
    if (dtag == jl_vararg_tag << 4) {
        jl_vararg_t *vma = (jl_vararg_t*)a;
        jl_vararg_t *vmb = (jl_vararg_t*)b;
        jl_value_t *vmaT = vma->T ? vma->T : (jl_value_t*)jl_any_type;
        jl_value_t *vmbT = vmb->T ? vmb->T : (jl_value_t*)jl_any_type;
        if (!egal_types(vmaT, vmbT, env, tvar_names))
            return 0;
        if (vma->N && vmb->N)
            return egal_types(vma->N, vmb->N, env, tvar_names);
        return !vma->N && !vmb->N;
    }
    assert(dtag == jl_symbol_tag << 4 || dtag == jl_module_tag << 4 || !((jl_datatype_t*)jl_typeof(a))->name->mutabl);
    return jl_egal__bitstag(a, b, dtag);
}

JL_DLLEXPORT int jl_types_egal(jl_value_t *a, jl_value_t *b)
{
    return egal_types(a, b, NULL, 0);
}

JL_DLLEXPORT int (jl_egal)(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED) JL_NOTSAFEPOINT
{
    // warning: a,b may NOT have been gc-rooted by the caller
    return jl_egal(a, b);
}

JL_DLLEXPORT int jl_egal__unboxed(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, uintptr_t dtag) JL_NOTSAFEPOINT
{
    // warning: a,b may NOT have been gc-rooted by the caller
    return jl_egal__unboxed_(a, b, dtag);
}

JL_DLLEXPORT int jl_egal__bitstag(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, uintptr_t dtag) JL_NOTSAFEPOINT
{
    if (dtag < jl_max_tags << 4) {
        switch ((enum jl_small_typeof_tags)(dtag >> 4)) {
        case jl_int8_tag:
        case jl_uint8_tag:
            return *(uint8_t*)a == *(uint8_t*)b;
        case jl_int16_tag:
        case jl_uint16_tag:
            return *(uint16_t*)a == *(uint16_t*)b;
        case jl_int32_tag:
        case jl_uint32_tag:
        case jl_char_tag:
            return *(uint32_t*)a == *(uint32_t*)b;
        case jl_int64_tag:
        case jl_uint64_tag:
            return *(uint64_t*)a == *(uint64_t*)b;
        case jl_unionall_tag:
            return egal_types(a, b, NULL, 1);
        case jl_uniontype_tag:
            return compare_fields(a, b, jl_uniontype_type);
        case jl_vararg_tag:
            return compare_fields(a, b, jl_vararg_type);
        case jl_task_tag:
        case jl_tvar_tag:
        case jl_symbol_tag:
        case jl_module_tag:
        case jl_bool_tag:
            return 0;
        case jl_simplevector_tag:
            return compare_svec((jl_svec_t*)a, (jl_svec_t*)b);
        case jl_string_tag: {
                size_t l = jl_string_len(a);
                if (jl_string_len(b) != l)
                    return 0;
                return !memcmp(jl_string_data(a), jl_string_data(b), l);
            }
        case jl_datatype_tag: {
                jl_datatype_t *dta = (jl_datatype_t*)a;
                jl_datatype_t *dtb = (jl_datatype_t*)b;
                if (dta->name != dtb->name)
                    return 0;
                if (dta->name != jl_tuple_typename && (dta->isconcretetype || dtb->isconcretetype))
                    return 0;
                return compare_svec(dta->parameters, dtb->parameters);
            }
#ifndef NDEBUG
        default:
#endif
        case jl_max_tags:
        case jl_null_tag:
        case jl_typeofbottom_tag:
        case jl_tags_count:
            abort();
        }
    }
    return jl_egal__bits(a, b, (jl_datatype_t*)dtag);
}

inline int jl_egal__bits(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
    size_t sz = jl_datatype_size(dt);
    if (sz == 0)
        return 1;
    size_t nf = jl_datatype_nfields(dt);
    if (nf == 0 || !dt->layout->flags.haspadding)
        return bits_equal(a, b, sz);
    return compare_fields(a, b, dt);
}

// object_id ------------------------------------------------------------------

static uintptr_t bits_hash(const void *b, size_t sz) JL_NOTSAFEPOINT
{
    switch (sz) {
    case 1:  return int32hash(*(const int8_t*)b);
    case 2:  return int32hash(jl_load_unaligned_i16(b));
    case 4:  return int32hash(jl_load_unaligned_i32(b));
#ifdef _P64
    case 8:  return int64hash(jl_load_unaligned_i64(b));
#else
    case 8:  return int64to32hash(jl_load_unaligned_i64(b));
#endif
    default:
#ifdef _P64
        return memhash((const char*)b, sz);
#else
        return memhash32((const char*)b, sz);
#endif
    }
}

static uintptr_t NOINLINE hash_svec(jl_svec_t *v) JL_NOTSAFEPOINT
{
    uintptr_t h = 0;
    size_t i, l = jl_svec_len(v);
    for (i = 0; i < l; i++) {
        jl_value_t *x = jl_svecref(v, i);
        uintptr_t u = (x == NULL) ? 0 : jl_object_id(x);
        h = bitmix(h, u);
    }
    return h;
}

static uintptr_t immut_id_(jl_datatype_t *dt, jl_value_t *v, uintptr_t h) JL_NOTSAFEPOINT;

typedef struct _varidx {
    jl_tvar_t *var;
    struct _varidx *prev;
} jl_varidx_t;

static uintptr_t type_object_id_(jl_value_t *v, jl_varidx_t *env) JL_NOTSAFEPOINT
{
    if (v == NULL)
        return 0;
    jl_datatype_t *tv = (jl_datatype_t*)jl_typeof(v);
    if (tv == jl_tvar_type) {
        jl_varidx_t *pe = env;
        int i = 0;
        while (pe != NULL) {
            if (pe->var == (jl_tvar_t*)v)
                return (i<<8) + 42;
            i++;
            pe = pe->prev;
        }
        uintptr_t bits = jl_astaggedvalue(v)->header;
        if (bits & GC_IN_IMAGE)
            return ((uintptr_t*)v)[-2];
        return inthash((uintptr_t)v);
    }
    if (tv == jl_uniontype_type) {
        return bitmix(bitmix(jl_object_id((jl_value_t*)tv),
                             type_object_id_(((jl_uniontype_t*)v)->a, env)),
                      type_object_id_(((jl_uniontype_t*)v)->b, env));
    }
    if (tv == jl_unionall_type) {
        jl_unionall_t *u = (jl_unionall_t*)v;
        uintptr_t h = u->var->name->hash;
        h = bitmix(h, type_object_id_(u->var->lb, env));
        h = bitmix(h, type_object_id_(u->var->ub, env));
        jl_varidx_t e = { u->var, env };
        return bitmix(h, type_object_id_(u->body, &e));
    }
    if (tv == jl_datatype_type) {
        jl_datatype_t *dtv = (jl_datatype_t*)v;
        if (dtv->isconcretetype)
            return dtv->hash;
        uintptr_t h = ~dtv->name->hash;
        size_t i, l = jl_nparams(v);
        for (i = 0; i < l; i++) {
            h = bitmix(h, type_object_id_(jl_tparam(v, i), env));
        }
        return h;
    }
    if (tv == jl_vararg_type) {
        jl_vararg_t *vm = (jl_vararg_t*)v;
        jl_value_t *t = vm->T ? vm->T : (jl_value_t*)jl_any_type;
        jl_value_t *n = vm->N ? vm->N : jl_nothing;
        return bitmix(type_object_id_(t, env),
            type_object_id_(n, env));
    }
    if (tv == jl_symbol_type)
        return ((jl_sym_t*)v)->hash;
    if (tv == jl_module_type)
        return ((jl_module_t*)v)->hash;
    assert(!tv->name->mutabl);
    return immut_id_(tv, v, tv->hash);
}

static uintptr_t immut_id_(jl_datatype_t *dt, jl_value_t *v, uintptr_t h) JL_NOTSAFEPOINT
{
    size_t sz = jl_datatype_size(dt);
    if (sz == 0)
        return ~h;
    size_t f, nf = jl_datatype_nfields(dt);
    if (nf == 0 || (!dt->layout->flags.haspadding && dt->layout->npointers == 0)) {
        // operate element-wise if there are unused bits inside,
        // otherwise just take the whole data block at once
        // a few select pointers (notably symbol) also have special hash values
        // which may affect the stability of the objectid hash, even though
        // they don't affect egal comparison
        return bits_hash(v, sz) ^ h;
    }
    if (dt == jl_unionall_type)
        return type_object_id_(v, NULL);
    for (f = 0; f < nf; f++) {
        size_t offs = jl_field_offset(dt, f);
        char *vo = (char*)v + offs;
        uintptr_t u;
        if (jl_field_isptr(dt, f)) {
            jl_value_t *f = *(jl_value_t**)vo;
            u = (f == NULL) ? 0 : jl_object_id(f);
        }
        else {
            jl_datatype_t *fieldtype = (jl_datatype_t*)jl_field_type_concrete(dt, f);
            if (jl_is_uniontype(fieldtype)) {
                uint8_t sel = ((uint8_t*)vo)[jl_field_size(dt, f) - 1];
                fieldtype = (jl_datatype_t*)jl_nth_union_component((jl_value_t*)fieldtype, sel);
            }
            assert(jl_is_datatype(fieldtype) && !fieldtype->name->abstract && !fieldtype->name->mutabl);
            int32_t first_ptr = fieldtype->layout->first_ptr;
            if (first_ptr >= 0 && ((jl_value_t**)vo)[first_ptr] == NULL) {
                // If the field is a inline immutable that can be can be undef
                // we need to check to check for undef first since undef struct
                // may have fields that are different but should still be treated as equal.
                u = 0;
            }
            else {
                u = immut_id_(fieldtype, (jl_value_t*)vo, 0);
            }
        }
        h = bitmix(h, u);
    }
    return h;
}

static uintptr_t NOINLINE jl_object_id__cold(uintptr_t tv, jl_value_t *v) JL_NOTSAFEPOINT
{
    jl_datatype_t *dt = (jl_datatype_t*)jl_to_typeof(tv);
    if (dt->name->mutabl) {
        if (dt == jl_string_type) {
#ifdef _P64
            return memhash_seed(jl_string_data(v), jl_string_len(v), 0xedc3b677);
#else
            return memhash32_seed(jl_string_data(v), jl_string_len(v), 0xedc3b677);
#endif
        }
        if (dt == jl_simplevector_type)
            return hash_svec((jl_svec_t*)v);
        if (dt == jl_datatype_type) {
            jl_datatype_t *dtv = (jl_datatype_t*)v;
            uintptr_t h = ~dtv->name->hash;
            return bitmix(h, hash_svec(dtv->parameters));
        }
        if (dt == jl_module_type) {
            jl_module_t *m = (jl_module_t*)v;
            return m->hash;
        }
        uintptr_t bits = jl_astaggedvalue(v)->header;
        if (bits & GC_IN_IMAGE)
            return ((uintptr_t*)v)[-2];
        return inthash((uintptr_t)v);
    }
    return immut_id_(dt, v, dt->hash);
}

JL_DLLEXPORT inline uintptr_t jl_object_id_(uintptr_t tv, jl_value_t *v) JL_NOTSAFEPOINT
{
    if (tv == jl_symbol_tag << 4) {
        return ((jl_sym_t*)v)->hash;
    }
    else if (tv == jl_datatype_tag << 4) {
        jl_datatype_t *dtv = (jl_datatype_t*)v;
        if (dtv->isconcretetype)
            return dtv->hash;
    }
    else if (tv == (uintptr_t)jl_typename_type) {
        return ((jl_typename_t*)v)->hash;
    }
    return jl_object_id__cold(tv, v);
}


JL_DLLEXPORT uintptr_t jl_object_id(jl_value_t *v) JL_NOTSAFEPOINT
{
    return jl_object_id_(jl_typetagof(v), v);
}

// eq hash table --------------------------------------------------------------

#include "iddict.c"

// object model and type primitives -------------------------------------------

JL_CALLABLE(jl_f_is)
{
    JL_NARGS(===, 2, 2);
    return jl_egal(args[0], args[1]) ? jl_true : jl_false;
}

JL_CALLABLE(jl_f_typeof)
{
    JL_NARGS(typeof, 1, 1);
    return jl_typeof(args[0]);
}

JL_CALLABLE(jl_f_sizeof)
{
    JL_NARGS(sizeof, 1, 1);
    jl_value_t *x = args[0];
    if (jl_is_unionall(x) || jl_is_uniontype(x)) {
        x = jl_unwrap_unionall(x);
        size_t elsize = 0;
        int isinline = jl_uniontype_size(x, &elsize);
        if (isinline)
            return jl_box_long(elsize);
        if (!jl_is_datatype(x))
            jl_error("Argument is an abstract type and does not have a definite size.");
    }
    if (jl_is_datatype(x)) {
        jl_datatype_t *dx = (jl_datatype_t*)x;
        if (!jl_struct_try_layout(dx)) {
            if (dx->name->abstract)
                jl_errorf("Abstract type %s does not have a definite size.", jl_symbol_name(dx->name->name));
            else
                jl_errorf("Argument is an incomplete %s type and does not have a definite size.", jl_symbol_name(dx->name->name));
        }
        if (jl_is_layout_opaque(dx->layout)) // includes all GenericMemory{kind,T}
            jl_errorf("Type %s does not have a definite size.", jl_symbol_name(dx->name->name));
        return jl_box_long(jl_datatype_size(x));
    }
    if (x == jl_bottom_type)
        jl_error("The empty type does not have a definite size since it does not have instances.");
    if (jl_is_string(x))
        return jl_box_long(jl_string_len(x));
    if (jl_is_symbol(x))
        return jl_box_long(strlen(jl_symbol_name((jl_sym_t*)x)));
    if (jl_is_svec(x))
        return jl_box_long((1+jl_svec_len(x))*sizeof(void*));
    jl_datatype_t *dt = (jl_datatype_t*)jl_typeof(x);
    assert(jl_is_datatype(dt));
    assert(!dt->name->abstract);
    size_t sz = dt->layout->size;
    if (jl_is_genericmemory(x))
        sz = (sz + (dt->layout->flags.arrayelem_isunion ? 1 : 0)) * ((jl_genericmemory_t*)x)->length;
    return jl_box_long(sz);
}

JL_CALLABLE(jl_f_issubtype)
{
    JL_NARGS(<:, 2, 2);
    jl_value_t *a = args[0], *b = args[1];
    JL_TYPECHK(<:, type, a);
    JL_TYPECHK(<:, type, b);
    return (jl_subtype(a,b) ? jl_true : jl_false);
}

JL_CALLABLE(jl_f_isa)
{
    JL_NARGS(isa, 2, 2);
    JL_TYPECHK(isa, type, args[1]);
    return (jl_isa(args[0],args[1]) ? jl_true : jl_false);
}

JL_CALLABLE(jl_f_typeassert)
{
    JL_NARGS(typeassert, 2, 2);
    JL_TYPECHK(typeassert, type, args[1]);
    if (!jl_isa(args[0],args[1]))
        jl_type_error("typeassert", args[1], args[0]);
    return args[0];
}

JL_CALLABLE(jl_f_throw)
{
    JL_NARGS(throw, 1, 1);
    jl_throw(args[0]);
    return jl_nothing;
}

JL_CALLABLE(jl_f_ifelse)
{
    JL_NARGS(ifelse, 3, 3);
    JL_TYPECHK(ifelse, bool, args[0]);
    return (args[0] == jl_false ? args[2] : args[1]);
}

// apply ----------------------------------------------------------------------

static NOINLINE jl_svec_t *_copy_to(size_t newalloc, jl_value_t **oldargs, size_t oldalloc)
{
    size_t j;
    jl_svec_t *newheap = jl_alloc_svec_uninit(newalloc);
    jl_value_t **newargs = jl_svec_data(newheap);
    for (j = 0; j < oldalloc; j++)
        newargs[j] = oldargs[j];
    for (; j < newalloc; j++)
        newargs[j] = NULL;
    return newheap;
}

STATIC_INLINE void _grow_to(jl_value_t **root, jl_value_t ***oldargs, jl_svec_t **arg_heap, size_t *n_alloc, size_t newalloc, size_t extra)
{
    size_t oldalloc = *n_alloc;
    if (oldalloc >= newalloc)
        return;
    if (extra)
        // grow by an extra 50% if newalloc is still only a guess
        newalloc += oldalloc / 2 + 16;
    JL_GC_PROMISE_ROOTED(*oldargs);
    jl_svec_t *newheap = _copy_to(newalloc, *oldargs, oldalloc);
    *root = (jl_value_t*)newheap;
    *arg_heap = newheap;
    *oldargs = jl_svec_data(newheap);
    *n_alloc = newalloc;
}


static jl_value_t *jl_arrayref(jl_array_t *a, size_t i)
{
    return jl_memoryrefget(jl_memoryrefindex(a->ref, i));
}

static jl_value_t *do_apply(jl_value_t **args, uint32_t nargs, jl_value_t *iterate)
{
    jl_function_t *f = args[0];
    if (nargs == 2) {
        // some common simple cases
        if (f == jl_builtin_svec) {
            if (jl_is_svec(args[1]))
                return args[1];
            if (jl_is_genericmemory(args[1])) {
                jl_genericmemory_t *mem = (jl_genericmemory_t*)args[1];
                size_t n = mem->length;
                jl_svec_t *t = jl_alloc_svec(n);
                JL_GC_PUSH1(&t);
                for (size_t i = 0; i < n; i++) {
                    jl_svecset(t, i, jl_genericmemoryref(mem, i));
                }
                JL_GC_POP();
                return (jl_value_t*)t;
            }
            if (jl_is_array(args[1])) {
                size_t n = jl_array_len(args[1]);
                jl_svec_t *t = jl_alloc_svec(n);
                JL_GC_PUSH1(&t);
                for (size_t i = 0; i < n; i++) {
                    jl_svecset(t, i, jl_arrayref((jl_array_t*)args[1], i));
                }
                JL_GC_POP();
                return (jl_value_t*)t;
            }
        }
        else if (f == jl_builtin_tuple && jl_is_tuple(args[1])) {
            return args[1];
        }
    }
    // estimate how many real arguments we appear to have
    size_t precount = 1;
    size_t extra = 0;
    size_t i;
    for (i = 1; i < nargs; i++) {
        if (jl_is_svec(args[i])) {
            precount += jl_svec_len(args[i]);
        }
        else if (jl_is_tuple(args[i]) || jl_is_namedtuple(args[i])) {
            precount += jl_nfields(args[i]);
        }
        else if (jl_is_genericmemory(args[i])) {
            precount += ((jl_genericmemory_t*)args[i])->length;
        }
        else if (jl_is_array(args[i])) {
            precount += jl_array_len(args[i]);
        }
        else {
            extra += 1;
        }
    }
    if (extra && iterate == NULL) {
        jl_undefined_var_error(jl_symbol("iterate"), NULL);
    }
    // allocate space for the argument array and gc roots for it
    // based on our previous estimates
    // use the stack if we have a good estimate that it is small
    // otherwise, use the heap and grow it incrementally
    // and if there are any extra elements, we'll also need a couple extra roots
    int onstack = (precount + 32 * extra < jl_page_size / sizeof(jl_value_t*));
    size_t stackalloc = onstack ? (precount + 4 * extra + (extra ? 16 : 0)) : 1;
    size_t n_alloc;
    jl_value_t **roots;
    JL_GC_PUSHARGS(roots, stackalloc + (extra ? 2 : 0));
    jl_value_t **newargs;
    jl_svec_t *arg_heap = NULL;
    if (onstack) {
        newargs = roots;
        n_alloc = stackalloc;
    }
    else {
        // put arguments on the heap if there are too many
        newargs = NULL;
        n_alloc = precount;
        if (extra)
            // grow by an extra 50% if newalloc is still only a guess
            n_alloc += n_alloc / 2 + 16;
        arg_heap = jl_alloc_svec(n_alloc);
        roots[0] = (jl_value_t*)arg_heap;
        newargs = jl_svec_data(arg_heap);
    }
    newargs[0] = f;
    precount -= 1;
    size_t n = 1;
    for (i = 1; i < nargs; i++) {
        jl_value_t *ai = args[i];
        if (jl_is_svec(ai)) {
            jl_svec_t *t = (jl_svec_t*)ai;
            size_t j, al = jl_svec_len(t);
            precount = (precount > al) ? precount - al : 0;
            _grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
            assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
            for (j = 0; j < al; j++) {
                newargs[n++] = jl_svecref(t, j);
                // GC Note: here we assume that the return value of `jl_svecref`
                //          will not be young if `arg_heap` becomes old
                //          since they are allocated before `arg_heap`. Otherwise,
                //          we need to add write barrier for !onstack
            }
        }
        else if (jl_is_tuple(ai) || jl_is_namedtuple(ai)) {
            size_t j, al = jl_nfields(ai);
            precount = (precount > al) ? precount - al : 0;
            _grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
            assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
            for (j = 0; j < al; j++) {
                // jl_fieldref may allocate.
                newargs[n++] = jl_fieldref(ai, j);
                if (arg_heap)
                    jl_gc_wb(arg_heap, newargs[n - 1]);
            }
        }
        else if (jl_is_genericmemory(ai)) {
            jl_genericmemory_t *mem = (jl_genericmemory_t*)ai;
            size_t j, al = mem->length;
            precount = (precount > al) ? precount - al : 0;
            _grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
            assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
            const jl_datatype_layout_t *layout = ((jl_datatype_t*)jl_typetagof(mem))->layout;
            if (layout->flags.arrayelem_isboxed) {
                for (j = 0; j < al; j++) {
                    jl_value_t *arg = jl_genericmemory_ptr_ref(mem, j);
                    // apply with array splatting may have embedded NULL value (#11772)
                    if (__unlikely(arg == NULL))
                        jl_throw(jl_undefref_exception);
                    newargs[n++] = arg;
                    if (arg_heap)
                        jl_gc_wb(arg_heap, arg);
                }
            }
            else {
                for (j = 0; j < al; j++) {
                    newargs[n++] = jl_genericmemoryref(mem, j);
                    if (arg_heap)
                        jl_gc_wb(arg_heap, newargs[n - 1]);
                }
            }
        }
        else if (jl_is_array(ai)) {
            jl_array_t *aai = (jl_array_t*)ai;
            size_t j, al = jl_array_len(aai);
            precount = (precount > al) ? precount - al : 0;
            _grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
            assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
            const jl_datatype_layout_t *layout = ((jl_datatype_t*)jl_typetagof(aai->ref.mem))->layout;
            if (layout->flags.arrayelem_isboxed) {
                for (j = 0; j < al; j++) {
                    jl_value_t *arg = jl_array_ptr_ref(aai, j);
                    // apply with array splatting may have embedded NULL value (#11772)
                    if (__unlikely(arg == NULL))
                        jl_throw(jl_undefref_exception);
                    newargs[n++] = arg;
                    if (arg_heap)
                        jl_gc_wb(arg_heap, arg);
                }
            }
            else {
                for (j = 0; j < al; j++) {
                    newargs[n++] = jl_arrayref(aai, j);
                    if (arg_heap)
                        jl_gc_wb(arg_heap, newargs[n - 1]);
                }
            }
        }
        else {
            assert(extra > 0);
            jl_value_t *args[2];
            args[0] = ai;
            jl_value_t *next = jl_apply_generic(iterate, args, 1);
            while (next != jl_nothing) {
                roots[stackalloc] = next;
                jl_value_t *value = jl_get_nth_field_checked(next, 0);
                roots[stackalloc + 1] = value;
                jl_value_t *state = jl_get_nth_field_checked(next, 1);
                roots[stackalloc] = state;
                _grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + 1, extra);
                JL_GC_ASSERT_LIVE(value);
                newargs[n++] = value;
                if (arg_heap)
                    jl_gc_wb(arg_heap, value);
                roots[stackalloc + 1] = NULL;
                JL_GC_ASSERT_LIVE(state);
                args[1] = state;
                next = jl_apply_generic(iterate, args, 2);
            }
            roots[stackalloc] = NULL;
            extra -= 1;
        }
    }
    if (arg_heap) {
        // optimization: keep only the first root, free the others
#ifndef __clang_gcanalyzer__
        ((void**)roots)[-2] = (void*)JL_GC_ENCODE_PUSHARGS(1);
#endif
    }
    jl_value_t *result = jl_apply(newargs, n);
    JL_GC_POP();
    return result;
}

JL_CALLABLE(jl_f__apply_iterate)
{
    JL_NARGSV(_apply_iterate, 2);
    return do_apply(args + 1, nargs - 1, args[0]);
}

// this is like `_apply`, but with quasi-exact checks to make sure it is pure
JL_CALLABLE(jl_f__apply_pure)
{
    jl_task_t *ct = jl_current_task;
    int last_in = ct->ptls->in_pure_callback;
    jl_value_t *ret = NULL;
    JL_TRY {
        ct->ptls->in_pure_callback = 1;
        // because this function was declared pure,
        // we should be allowed to run it in any world
        // so we run it in the newest world;
        // because, why not :)
        // and `promote` works better this way
        size_t last_age = ct->world_age;
        ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
        ret = do_apply(args, nargs, NULL);
        ct->world_age = last_age;
        ct->ptls->in_pure_callback = last_in;
    }
    JL_CATCH {
        ct->ptls->in_pure_callback = last_in;
        jl_rethrow();
    }
    return ret;
}

// this is like a regular call, but always runs in the newest world
JL_CALLABLE(jl_f__call_latest)
{
    jl_task_t *ct = jl_current_task;
    size_t last_age = ct->world_age;
    if (!ct->ptls->in_pure_callback)
        ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
    jl_value_t *ret = jl_apply(args, nargs);
    ct->world_age = last_age;
    return ret;
}

// Like call_in_world, but runs in the specified world.
// If world > jl_atomic_load_acquire(&jl_world_counter), run in the latest world.
JL_CALLABLE(jl_f__call_in_world)
{
    JL_NARGSV(_apply_in_world, 2);
    jl_task_t *ct = jl_current_task;
    size_t last_age = ct->world_age;
    JL_TYPECHK(_apply_in_world, ulong, args[0]);
    size_t world = jl_unbox_ulong(args[0]);
    if (!ct->ptls->in_pure_callback) {
        ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
        if (ct->world_age > world)
            ct->world_age = world;
    }
    jl_value_t *ret = jl_apply(&args[1], nargs - 1);
    ct->world_age = last_age;
    return ret;
}

JL_CALLABLE(jl_f__call_in_world_total)
{
    JL_NARGSV(_call_in_world_total, 2);
    JL_TYPECHK(_apply_in_world, ulong, args[0]);
    jl_task_t *ct = jl_current_task;
    int last_in = ct->ptls->in_pure_callback;
    jl_value_t *ret = NULL;
    size_t last_age = ct->world_age;
    JL_TRY {
        ct->ptls->in_pure_callback = 1;
        size_t world = jl_unbox_ulong(args[0]);
        ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
        if (ct->world_age > world)
            ct->world_age = world;
        ret = jl_apply(&args[1], nargs - 1);
        ct->world_age = last_age;
        ct->ptls->in_pure_callback = last_in;
    }
    JL_CATCH {
        ct->ptls->in_pure_callback = last_in;
        jl_rethrow();
    }
    return ret;
}

// tuples ---------------------------------------------------------------------

JL_CALLABLE(jl_f_tuple)
{
    size_t i;
    if (nargs == 0)
        return (jl_value_t*)jl_emptytuple;
    jl_datatype_t *tt = jl_inst_arg_tuple_type(args[0], &args[1], nargs, 0);
    JL_GC_PROMISE_ROOTED(tt); // it is a concrete type
    if (tt->instance != NULL)
        return tt->instance;
    jl_task_t *ct = jl_current_task;
    jl_value_t *jv = jl_gc_alloc(ct->ptls, jl_datatype_size(tt), tt);
    for (i = 0; i < nargs; i++)
        set_nth_field(tt, jv, i, args[i], 0);
    return jv;
}

JL_CALLABLE(jl_f_svec)
{
    size_t i;
    if (nargs == 0)
        return (jl_value_t*)jl_emptysvec;
    jl_svec_t *t = jl_alloc_svec_uninit(nargs);
    for (i = 0; i < nargs; i++) {
        jl_svecset(t, i, args[i]);
    }
    return (jl_value_t*)t;
}

// struct operations ------------------------------------------------------------

enum jl_memory_order jl_get_atomic_order(jl_sym_t *order, char loading, char storing)
{
    if (order == jl_not_atomic_sym)
        return jl_memory_order_notatomic;
    if (order == jl_unordered_sym && (loading ^ storing))
        return jl_memory_order_unordered;
    if (order == jl_monotonic_sym && (loading || storing))
        return jl_memory_order_monotonic;
    if (order == jl_acquire_sym && loading)
        return jl_memory_order_acquire;
    if (order == jl_release_sym && storing)
        return jl_memory_order_release;
    if (order == jl_acquire_release_sym && loading && storing)
        return jl_memory_order_acq_rel;
    if (order == jl_sequentially_consistent_sym)
        return jl_memory_order_seq_cst;
    return jl_memory_order_invalid;
}

enum jl_memory_order jl_get_atomic_order_checked(jl_sym_t *order, char loading, char storing)
{
    enum jl_memory_order mo = jl_get_atomic_order(order, loading, storing);
    if (mo < 0) // invalid
        jl_atomic_error("invalid atomic ordering");
    return mo;
}

static inline size_t get_checked_fieldindex(const char *name, jl_datatype_t *st, jl_value_t *v, jl_value_t *arg, int mutabl)
{
    if (mutabl) {
        if (st == jl_module_type)
            jl_error("cannot assign variables in other modules");
        if (!st->name->mutabl)
            jl_errorf("%s: immutable struct of type %s cannot be changed", name, jl_symbol_name(st->name->name));
    }
    size_t idx;
    if (jl_is_long(arg)) {
        idx = jl_unbox_long(arg) - 1;
        if (idx >= jl_datatype_nfields(st))
            jl_bounds_error(v, arg);
    }
    else if (jl_is_symbol(arg)) {
        idx = jl_field_index(st, (jl_sym_t*)arg, 1);
    }
    else {
        jl_value_t *ts[2] = {(jl_value_t*)jl_long_type, (jl_value_t*)jl_symbol_type};
        jl_value_t *t = jl_type_union(ts, 2);
        jl_type_error("getfield", t, arg);
    }
    if (mutabl && jl_field_isconst(st, idx)) {
        jl_errorf("%s: const field .%s of type %s cannot be changed", name,
                jl_symbol_name((jl_sym_t*)jl_svec_ref(jl_field_names(st), idx)), jl_symbol_name(st->name->name));
    }
    return idx;
}

JL_CALLABLE(jl_f_getfield)
{
    enum jl_memory_order order = jl_memory_order_unspecified;
    JL_NARGS(getfield, 2, 4);
    if (nargs == 4) {
        JL_TYPECHK(getfield, symbol, args[2]);
        JL_TYPECHK(getfield, bool, args[3]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
    }
    else if (nargs == 3) {
        if (!jl_is_bool(args[2])) {
            JL_TYPECHK(getfield, symbol, args[2]);
            order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
        }
    }
    jl_value_t *v = args[0];
    jl_value_t *vt = jl_typeof(v);
    if (vt == (jl_value_t*)jl_module_type)
        return jl_f_getglobal(NULL, args, 2); // we just ignore the atomic order and boundschecks
    jl_datatype_t *st = (jl_datatype_t*)vt;
    size_t idx = get_checked_fieldindex("getfield", st, v, args[1], 0);
    int isatomic = jl_field_isatomic(st, idx);
    if (!isatomic && order != jl_memory_order_notatomic && order != jl_memory_order_unspecified)
        jl_atomic_error("getfield: non-atomic field cannot be accessed atomically");
    if (isatomic && order == jl_memory_order_notatomic)
        jl_atomic_error("getfield: atomic field cannot be accessed non-atomically");
    v = jl_get_nth_field_checked(v, idx);
    if (order >= jl_memory_order_acq_rel || order == jl_memory_order_acquire)
        jl_fence(); // `v` already had at least consume ordering
    return v;
}

JL_CALLABLE(jl_f_setfield)
{
    enum jl_memory_order order = jl_memory_order_notatomic;
    JL_NARGS(setfield!, 3, 4);
    if (nargs == 4) {
        JL_TYPECHK(setfield!, symbol, args[3]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[3], 0, 1);
    }
    jl_value_t *v = args[0];
    jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
    size_t idx = get_checked_fieldindex("setfield!", st, v, args[1], 1);
    int isatomic = !!jl_field_isatomic(st, idx);
    if (isatomic == (order == jl_memory_order_notatomic))
        jl_atomic_error(isatomic ? "setfield!: atomic field cannot be written non-atomically"
                                 : "setfield!: non-atomic field cannot be written atomically");
    jl_value_t *ft = jl_field_type_concrete(st, idx);
    if (!jl_isa(args[2], ft))
        jl_type_error("setfield!", ft, args[2]);
    if (order >= jl_memory_order_acq_rel || order == jl_memory_order_release)
        jl_fence(); // `st->[idx]` will have at least relaxed ordering
    set_nth_field(st, v, idx, args[2], isatomic);
    return args[2];
}

JL_CALLABLE(jl_f_swapfield)
{
    enum jl_memory_order order = jl_memory_order_notatomic;
    JL_NARGS(swapfield!, 3, 4);
    if (nargs == 4) {
        JL_TYPECHK(swapfield!, symbol, args[3]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[3], 1, 1);
    }
    jl_value_t *v = args[0];
    jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
    size_t idx = get_checked_fieldindex("swapfield!", st, v, args[1], 1);
    int isatomic = !!jl_field_isatomic(st, idx);
    if (isatomic == (order == jl_memory_order_notatomic))
        jl_atomic_error(isatomic ? "swapfield!: atomic field cannot be written non-atomically"
                                 : "swapfield!: non-atomic field cannot be written atomically");
    v = swap_nth_field(st, v, idx, args[2], isatomic); // always seq_cst, if isatomic needed at all
    return v;
}

JL_CALLABLE(jl_f_modifyfield)
{
    enum jl_memory_order order = jl_memory_order_notatomic;
    JL_NARGS(modifyfield!, 4, 5);
    if (nargs == 5) {
        JL_TYPECHK(modifyfield!, symbol, args[4]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[4], 1, 1);
    }
    jl_value_t *v = args[0];
    jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
    size_t idx = get_checked_fieldindex("modifyfield!", st, v, args[1], 1);
    int isatomic = !!jl_field_isatomic(st, idx);
    if (isatomic == (order == jl_memory_order_notatomic))
        jl_atomic_error(isatomic ? "modifyfield!: atomic field cannot be written non-atomically"
                                 : "modifyfield!: non-atomic field cannot be written atomically");
    v = modify_nth_field(st, v, idx, args[2], args[3], isatomic); // always seq_cst, if isatomic needed at all
    return v;
}

JL_CALLABLE(jl_f_replacefield)
{
    enum jl_memory_order success_order = jl_memory_order_notatomic;
    JL_NARGS(replacefield!, 4, 6);
    if (nargs >= 5) {
        JL_TYPECHK(replacefield!, symbol, args[4]);
        success_order = jl_get_atomic_order_checked((jl_sym_t*)args[4], 1, 1);
    }
    enum jl_memory_order failure_order = success_order;
    if (nargs == 6) {
        JL_TYPECHK(replacefield!, symbol, args[5]);
        failure_order = jl_get_atomic_order_checked((jl_sym_t*)args[5], 1, 0);
    }
    if (failure_order > success_order)
        jl_atomic_error("invalid atomic ordering");
    // TODO: filter more invalid ordering combinations?
    jl_value_t *v = args[0];
    jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
    size_t idx = get_checked_fieldindex("replacefield!", st, v, args[1], 1);
    int isatomic = !!jl_field_isatomic(st, idx);
    if (isatomic == (success_order == jl_memory_order_notatomic))
        jl_atomic_error(isatomic ? "replacefield!: atomic field cannot be written non-atomically"
                                 : "replacefield!: non-atomic field cannot be written atomically");
    if (isatomic == (failure_order == jl_memory_order_notatomic))
        jl_atomic_error(isatomic ? "replacefield!: atomic field cannot be accessed non-atomically"
                                 : "replacefield!: non-atomic field cannot be accessed atomically");
    v = replace_nth_field(st, v, idx, args[2], args[3], isatomic); // always seq_cst, if isatomic needed at all
    return v;
}


static jl_value_t *get_fieldtype(jl_value_t *t, jl_value_t *f, int dothrow)
{
    if (jl_is_unionall(t)) {
        jl_value_t *u = t;
        JL_GC_PUSH1(&u);
        u = get_fieldtype(((jl_unionall_t*)t)->body, f, dothrow);
        u = jl_type_unionall(((jl_unionall_t*)t)->var, u);
        JL_GC_POP();
        return u;
    }
    if (jl_is_uniontype(t)) {
        jl_value_t **u;
        jl_value_t *r;
        JL_GC_PUSHARGS(u, 2);
        u[0] = get_fieldtype(((jl_uniontype_t*)t)->a, f, 0);
        u[1] = get_fieldtype(((jl_uniontype_t*)t)->b, f, 0);
        if (u[0] == jl_bottom_type && u[1] == jl_bottom_type && dothrow) {
            // error if all types in the union might have
            get_fieldtype(((jl_uniontype_t*)t)->a, f, 1);
            get_fieldtype(((jl_uniontype_t*)t)->b, f, 1);
        }
        r = jl_type_union(u, 2);
        JL_GC_POP();
        return r;
    }
    if (!jl_is_datatype(t))
        jl_type_error("fieldtype", (jl_value_t*)jl_datatype_type, t);
    jl_datatype_t *st = (jl_datatype_t*)t;
    int field_index;
    if (jl_is_long(f)) {
        field_index = jl_unbox_long(f) - 1;
    }
    else {
        JL_TYPECHK(fieldtype, symbol, f);
        field_index = jl_field_index(st, (jl_sym_t*)f, dothrow);
        if (field_index == -1)
            return jl_bottom_type;
    }
    if (st->name == jl_namedtuple_typename) {
        jl_value_t *nm = jl_tparam0(st);
        if (jl_is_tuple(nm)) {
            int nf = jl_nfields(nm);
            if (field_index < 0 || field_index >= nf) {
                if (dothrow)
                    jl_bounds_error(t, f);
                else
                    return jl_bottom_type;
            }
        }
        jl_value_t *tt = jl_tparam1(st);
        while (jl_is_typevar(tt))
            tt = ((jl_tvar_t*)tt)->ub;
        if (tt == (jl_value_t*)jl_any_type)
            return (jl_value_t*)jl_any_type;
        JL_GC_PUSH1(&f);
        if (jl_is_symbol(f))
            f = jl_box_long(field_index+1);
        jl_value_t *ft = get_fieldtype(tt, f, dothrow);
        JL_GC_POP();
        return ft;
    }
    jl_svec_t *types = jl_get_fieldtypes(st);
    int nf = jl_svec_len(types);
    if (nf > 0 && field_index >= nf-1 && st->name == jl_tuple_typename) {
        jl_value_t *ft = jl_field_type(st, nf-1);
        if (jl_is_vararg(ft))
            return jl_unwrap_vararg(ft);
    }
    if (field_index < 0 || field_index >= nf) {
        if (dothrow)
            jl_bounds_error(t, f);
        else
            return jl_bottom_type;
    }
    return jl_field_type(st, field_index);
}

JL_CALLABLE(jl_f_fieldtype)
{
    JL_NARGS(fieldtype, 2, 3);
    if (nargs == 3) {
        JL_TYPECHK(fieldtype, bool, args[2]);
    }
    return get_fieldtype(args[0], args[1], 1);
}

JL_CALLABLE(jl_f_nfields)
{
    JL_NARGS(nfields, 1, 1);
    jl_datatype_t *xt = (jl_datatype_t*)jl_typeof(args[0]);
    return jl_box_long(jl_datatype_nfields(xt));
}

JL_CALLABLE(jl_f_isdefined)
{
    jl_module_t *m = NULL;
    jl_sym_t *s = NULL;
    JL_NARGS(isdefined, 2, 3);
    enum jl_memory_order order = jl_memory_order_unspecified;
    if (nargs == 3) {
        JL_TYPECHK(isdefined, symbol, args[2]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
    }
    if (jl_is_module(args[0])) {
        JL_TYPECHK(isdefined, symbol, args[1]);
        m = (jl_module_t*)args[0];
        s = (jl_sym_t*)args[1];
        return jl_boundp(m, s) ? jl_true : jl_false; // is seq_cst already
    }
    jl_datatype_t *vt = (jl_datatype_t*)jl_typeof(args[0]);
    assert(jl_is_datatype(vt));
    size_t idx;
    if (jl_is_long(args[1])) {
        idx = jl_unbox_long(args[1]) - 1;
        if (idx >= jl_datatype_nfields(vt)) {
            if (order != jl_memory_order_unspecified)
                jl_atomic_error("isdefined: atomic ordering cannot be specified for nonexistent field");
            return jl_false;
        }
    }
    else {
        JL_TYPECHK(isdefined, symbol, args[1]);
        idx = jl_field_index(vt, (jl_sym_t*)args[1], 0);
        if ((int)idx == -1) {
            if (order != jl_memory_order_unspecified)
                jl_atomic_error("isdefined: atomic ordering cannot be specified for nonexistent field");
            return jl_false;
        }
    }
    int isatomic = jl_field_isatomic(vt, idx);
    if (!isatomic && order != jl_memory_order_notatomic && order != jl_memory_order_unspecified)
        jl_atomic_error("isdefined: non-atomic field cannot be accessed atomically");
    if (isatomic && order == jl_memory_order_notatomic)
        jl_atomic_error("isdefined: atomic field cannot be accessed non-atomically");
    int v = jl_field_isdefined(args[0], idx);
    if (v == 2) {
        if (order > jl_memory_order_notatomic)
            jl_fence(); // isbits case has no ordering already
    }
    else {
        if (order >= jl_memory_order_acq_rel || order == jl_memory_order_acquire)
            jl_fence(); // `v` already gave at least consume ordering
    }
    return v ? jl_true : jl_false;
}


// module bindings

JL_CALLABLE(jl_f_getglobal)
{
    enum jl_memory_order order = jl_memory_order_monotonic;
    JL_NARGS(getglobal, 2, 3);
    if (nargs == 3) {
        JL_TYPECHK(getglobal, symbol, args[2]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
    }
    jl_module_t *mod = (jl_module_t*)args[0];
    jl_sym_t *sym = (jl_sym_t*)args[1];
    JL_TYPECHK(getglobal, module, (jl_value_t*)mod);
    JL_TYPECHK(getglobal, symbol, (jl_value_t*)sym);
    if (order == jl_memory_order_notatomic)
        jl_atomic_error("getglobal: module binding cannot be read non-atomically");
    jl_value_t *v = jl_eval_global_var(mod, sym);
    // is seq_cst already, no fence needed
    return v;
}

JL_CALLABLE(jl_f_setglobal)
{
    enum jl_memory_order order = jl_memory_order_release;
    JL_NARGS(setglobal!, 3, 4);
    if (nargs == 4) {
        JL_TYPECHK(setglobal!, symbol, args[3]);
        order = jl_get_atomic_order_checked((jl_sym_t*)args[3], 0, 1);
    }
    jl_module_t *mod = (jl_module_t*)args[0];
    jl_sym_t *var = (jl_sym_t*)args[1];
    JL_TYPECHK(setglobal!, module, (jl_value_t*)mod);
    JL_TYPECHK(setglobal!, symbol, (jl_value_t*)var);
    if (order == jl_memory_order_notatomic)
        jl_atomic_error("setglobal!: module binding cannot be written non-atomically");
    // is seq_cst already, no fence needed
    jl_binding_t *b = jl_get_binding_wr(mod, var);
    jl_checked_assignment(b, mod, var, args[2]);
    return args[2];
}

JL_CALLABLE(jl_f_get_binding_type)
{
    JL_NARGS(get_binding_type, 2, 2);
    jl_module_t *mod = (jl_module_t*)args[0];
    jl_sym_t *var = (jl_sym_t*)args[1];
    JL_TYPECHK(get_binding_type, module, (jl_value_t*)mod);
    JL_TYPECHK(get_binding_type, symbol, (jl_value_t*)var);
    jl_value_t *ty = jl_get_binding_type(mod, var);
    if (ty == (jl_value_t*)jl_nothing) {
        jl_binding_t *b = jl_get_module_binding(mod, var, 0);
        if (b == NULL)
            return (jl_value_t*)jl_any_type;
        jl_binding_t *b2 = jl_atomic_load_relaxed(&b->owner);
        if (b2 != b)
            return (jl_value_t*)jl_any_type;
        jl_value_t *old_ty = NULL;
        jl_atomic_cmpswap_relaxed(&b->ty, &old_ty, (jl_value_t*)jl_any_type);
        return jl_atomic_load_relaxed(&b->ty);
    }
    return ty;
}

JL_CALLABLE(jl_f_set_binding_type)
{
    JL_NARGS(set_binding_type!, 2, 3);
    jl_module_t *m = (jl_module_t*)args[0];
    jl_sym_t *s = (jl_sym_t*)args[1];
    JL_TYPECHK(set_binding_type!, module, (jl_value_t*)m);
    JL_TYPECHK(set_binding_type!, symbol, (jl_value_t*)s);
    jl_value_t *ty = nargs == 2 ? (jl_value_t*)jl_any_type : args[2];
    JL_TYPECHK(set_binding_type!, type, ty);
    jl_binding_t *b = jl_get_binding_wr(m, s);
    jl_value_t *old_ty = NULL;
    if (!jl_atomic_cmpswap_relaxed(&b->ty, &old_ty, ty) && ty != old_ty) {
        if (nargs == 2)
            return jl_nothing;
        jl_errorf("cannot set type for global %s.%s. It already has a value or is already set to a different type.",
                  jl_symbol_name(m->name), jl_symbol_name(s));
    }
    jl_gc_wb(b, ty);
    return jl_nothing;
}


// apply_type -----------------------------------------------------------------

static int is_nestable_type_param(jl_value_t *t)
{
    if (jl_is_namedtuple_type(t))
        t = jl_tparam1(t);
    if (jl_is_tuple_type(t)) {
        // NOTE: tuples of symbols are not currently bits types, but have been
        // allowed as type parameters. this is a bit ugly.
        size_t i, l = jl_nparams(t);
        for (i = 0; i < l; i++) {
            jl_value_t *pi = jl_tparam(t, i);
            if (!(pi == (jl_value_t*)jl_symbol_type || jl_isbits(pi) || is_nestable_type_param(pi) ||
        jl_is_module(pi)))
                return 0;
        }
        return 1;
    }
    return 0;
}

int jl_valid_type_param(jl_value_t *v)
{
    if (jl_is_tuple(v) || jl_is_namedtuple(v))
        return is_nestable_type_param(jl_typeof(v));
    if (jl_is_vararg(v))
        return 0;
    // TODO: maybe more things
    return jl_is_type(v) || jl_is_typevar(v) || jl_is_symbol(v) || jl_isbits(jl_typeof(v)) ||
        jl_is_module(v);
}

JL_CALLABLE(jl_f_apply_type)
{
    JL_NARGSV(apply_type, 1);
    int i;
    if (args[0] == (jl_value_t*)jl_anytuple_type) {
        for(i=1; i < nargs; i++) {
            jl_value_t *pi = args[i];
            // TODO: should possibly only allow Types and TypeVars, but see
            // https://github.com/JuliaLang/julia/commit/85f45974a581ab9af955bac600b90d9ab00f093b#commitcomment-13041922
            if (jl_is_vararg(pi)) {
                if (i != nargs-1)
                    jl_type_error_rt("Tuple", "non-final parameter", (jl_value_t*)jl_type_type, pi);
            }
            else if (!jl_valid_type_param(pi)) {
                jl_type_error_rt("Tuple", "parameter", (jl_value_t*)jl_type_type, pi);
            }
        }
        return jl_apply_tuple_type_v(&args[1], nargs-1);
    }
    else if (args[0] == (jl_value_t*)jl_uniontype_type) {
        // Union{} has extra restrictions, so it needs to be checked after
        // substituting typevars (a valid_type_param check here isn't sufficient).
        return (jl_value_t*)jl_type_union(&args[1], nargs-1);
    }
    else if (jl_is_vararg(args[0])) {
        jl_vararg_t *vm = (jl_vararg_t*)args[0];
        if (!vm->T) {
            JL_NARGS(apply_type, 2, 3);
            return (jl_value_t*)jl_wrap_vararg(args[1], nargs == 3 ? args[2] : NULL, 1);
        }
        else if (!vm->N) {
            JL_NARGS(apply_type, 2, 2);
            return (jl_value_t*)jl_wrap_vararg(vm->T, args[1], 1);
        }
    }
    else if (jl_is_unionall(args[0])) {
        for(i=1; i < nargs; i++) {
            jl_value_t *pi = args[i];
            if (!jl_valid_type_param(pi)) {
                jl_type_error_rt("Type", "parameter",
                                 jl_isa(pi, (jl_value_t*)jl_number_type) ?
                                 (jl_value_t*)jl_long_type : (jl_value_t*)jl_type_type,
                                 pi);
            }
        }
        return jl_apply_type(args[0], &args[1], nargs-1);
    }
    jl_type_error("Type{...} expression", (jl_value_t*)jl_unionall_type, args[0]);
}

// generic function reflection ------------------------------------------------

JL_CALLABLE(jl_f_applicable)
{
    JL_NARGSV(applicable, 1);
    size_t world = jl_current_task->world_age;
    return jl_method_lookup(args, nargs, world) != NULL ? jl_true : jl_false;
}

JL_CALLABLE(jl_f_invoke)
{
    JL_NARGSV(invoke, 2);
    jl_value_t *argtypes = args[1];
    JL_GC_PUSH1(&argtypes);
    if (!jl_is_tuple_type(jl_unwrap_unionall(args[1])))
        jl_type_error("invoke", (jl_value_t*)jl_anytuple_type_type, args[1]);
    if (!jl_tuple_isa(&args[2], nargs - 2, (jl_datatype_t*)argtypes))
        jl_type_error("invoke: argument type error", argtypes, jl_f_tuple(NULL, &args[2], nargs - 2));
    jl_value_t *res = jl_gf_invoke(argtypes, args[0], &args[2], nargs - 1);
    JL_GC_POP();
    return res;
}

// Expr constructor for internal use ------------------------------------------

jl_expr_t *jl_exprn(jl_sym_t *head, size_t n)
{
    jl_task_t *ct = jl_current_task;
    jl_array_t *ar = jl_alloc_vec_any(n);
    JL_GC_PUSH1(&ar);
    jl_expr_t *ex = (jl_expr_t*)jl_gc_alloc(ct->ptls, sizeof(jl_expr_t),
                                            jl_expr_type);
    ex->head = head;
    ex->args = ar;
    JL_GC_POP();
    return ex;
}

JL_CALLABLE(jl_f__expr)
{
    jl_task_t *ct = jl_current_task;
    JL_NARGSV(Expr, 1);
    JL_TYPECHK(Expr, symbol, args[0]);
    jl_array_t *ar = jl_alloc_vec_any(nargs-1);
    JL_GC_PUSH1(&ar);
    for(size_t i=0; i < nargs-1; i++)
        jl_array_ptr_set(ar, i, args[i+1]);
    jl_expr_t *ex = (jl_expr_t*)jl_gc_alloc(ct->ptls, sizeof(jl_expr_t),
                                            jl_expr_type);
    ex->head = (jl_sym_t*)args[0];
    ex->args = ar;
    JL_GC_POP();
    return (jl_value_t*)ex;
}

// Typevar constructor for internal use
JL_DLLEXPORT jl_tvar_t *jl_new_typevar(jl_sym_t *name, jl_value_t *lb, jl_value_t *ub)
{
    if (lb != jl_bottom_type && !jl_is_type(lb) && !jl_is_typevar(lb))
        jl_type_error_rt("TypeVar", "lower bound", (jl_value_t *)jl_type_type, lb);
    if (ub != (jl_value_t *)jl_any_type && !jl_is_type(ub) && !jl_is_typevar(ub))
        jl_type_error_rt("TypeVar", "upper bound", (jl_value_t *)jl_type_type, ub);
    jl_task_t *ct = jl_current_task;
    jl_tvar_t *tv = (jl_tvar_t *)jl_gc_alloc(ct->ptls, sizeof(jl_tvar_t), jl_tvar_type);
    jl_set_typetagof(tv, jl_tvar_tag, 0);
    tv->name = name;
    tv->lb = lb;
    tv->ub = ub;
    return tv;
}

JL_CALLABLE(jl_f__typevar)
{
    JL_NARGS(TypeVar, 3, 3);
    JL_TYPECHK(TypeVar, symbol, args[0]);
    return (jl_value_t *)jl_new_typevar((jl_sym_t*)args[0], args[1], args[2]);
}

// genericmemory ---------------------------------------------------------------------

JL_CALLABLE(jl_f_memoryref)
{
    JL_NARGS(memoryref, 1, 3);
    if (nargs == 1) {
        JL_TYPECHK(memoryref, genericmemory, args[0]);
        jl_genericmemory_t *m = (jl_genericmemory_t*)args[0];
        jl_value_t *typ = jl_apply_type((jl_value_t*)jl_genericmemoryref_type, jl_svec_data(((jl_datatype_t*)jl_typetagof(m))->parameters), 3);
        JL_GC_PROMISE_ROOTED(typ); // it is a concrete type
        const jl_datatype_layout_t *layout = ((jl_datatype_t*)jl_typetagof(m))->layout;
        if (layout->flags.arrayelem_isunion || layout->size == 0)
            return (jl_value_t*)jl_new_memoryref(typ, m, 0);
        return (jl_value_t*)jl_new_memoryref(typ, m, m->ptr);
    }
    else {
        JL_TYPECHK(memoryref, genericmemoryref, args[0]);
        JL_TYPECHK(memoryref, long, args[1]);
        if (nargs == 3)
            JL_TYPECHK(memoryref, bool, args[2]);
        jl_genericmemoryref_t *m = (jl_genericmemoryref_t*)args[0];
        size_t i = jl_unbox_long(args[1]) - 1;
        const jl_datatype_layout_t *layout = ((jl_datatype_t*)jl_typetagof(m->mem))->layout;
        char *data = (char*)m->ptr_or_offset;
        if (layout->flags.arrayelem_isboxed) {
            if (((data - (char*)m->mem->ptr) / sizeof(jl_value_t*)) + i >= m->mem->length)
                jl_bounds_error((jl_value_t*)m, args[1]);
            data += sizeof(jl_value_t*) * i;
        }
        else if (layout->flags.arrayelem_isunion || layout->size == 0) {
            if ((size_t)data + i >= m->mem->length)
                jl_bounds_error((jl_value_t*)m, args[1]);
            data += i;
        }
        else {
            if (((data - (char*)m->mem->ptr) / layout->size) + i >= m->mem->length)
                jl_bounds_error((jl_value_t*)m, args[1]);
            data += layout->size * i;
        }
        return (jl_value_t*)jl_new_memoryref((jl_value_t*)jl_typetagof(m), m->mem, data);
    }
}

JL_CALLABLE(jl_f_memoryrefoffset)
{
    JL_NARGS(memoryrefoffset, 1, 1);
    JL_TYPECHK(memoryref, genericmemoryref, args[0]);
    jl_genericmemoryref_t m = *(jl_genericmemoryref_t*)args[0];
    const jl_datatype_layout_t *layout = ((jl_datatype_t*)jl_typetagof(m.mem))->layout;
    size_t offset;
    if (layout->flags.arrayelem_isboxed) {
        offset = (((char*)m.ptr_or_offset - (char*)m.mem->ptr) / sizeof(jl_value_t*));
    }
    else if (layout->flags.arrayelem_isunion || layout->size == 0) {
        offset = (size_t)m.ptr_or_offset;
    }
    else {
        offset = ((char*)m.ptr_or_offset - (char*)m.mem->ptr) / layout->size;
    }
    return (jl_value_t*)jl_box_long(offset + 1);
}

JL_CALLABLE(jl_f_memoryrefget)
{
    JL_NARGS(memoryrefget, 3, 3);
    JL_TYPECHK(memoryrefget, genericmemoryref, args[0]);
    JL_TYPECHK(memoryrefget, symbol, args[1]);
    JL_TYPECHK(memoryrefget, bool, args[2]);
    jl_genericmemoryref_t m = *(jl_genericmemoryref_t*)args[0];
    jl_value_t *isatomic = jl_tparam0(jl_typetagof(m.mem));
    if (isatomic == jl_false)
        if (args[1] != (jl_value_t*)jl_not_atomic_sym)
            jl_atomic_error("memoryrefget!: non-atomic memory cannot be accessed atomically");
    if (m.mem->length == 0)
        jl_bounds_error_int((jl_value_t*)m.mem, 1);
    return jl_memoryrefget(m);
}

JL_CALLABLE(jl_f_memoryrefset)
{
    JL_NARGS(memoryrefset!, 4, 4);
    JL_TYPECHK(memoryrefset!, genericmemoryref, args[0]);
    JL_TYPECHK(memoryrefset!, symbol, args[2]);
    JL_TYPECHK(memoryrefset!, bool, args[3]);
    jl_genericmemoryref_t m = *(jl_genericmemoryref_t*)args[0];
    jl_value_t *isatomic = jl_tparam0(jl_typetagof(m.mem));
    if (isatomic == jl_false)
        if (args[2] != (jl_value_t*)jl_not_atomic_sym)
            jl_atomic_error("memoryrefset!: non-atomic memory cannot be written atomically");
    if (m.mem->length == 0)
        jl_bounds_error_int((jl_value_t*)m.mem, 1);
    jl_memoryrefset(m, args[1]);
    return args[0];
}

JL_CALLABLE(jl_f_memoryref_isassigned)
{
    JL_NARGS(memoryref_isassigned, 3, 3);
    JL_TYPECHK(memoryref_isassigned, genericmemoryref, args[0]);
    JL_TYPECHK(memoryref_isassigned, symbol, args[1]);
    JL_TYPECHK(memoryref_isassigned, bool, args[2]);
    jl_genericmemoryref_t m = *(jl_genericmemoryref_t*)args[0];
    jl_value_t *isatomic = jl_tparam0(jl_typetagof(m.mem));
    if (isatomic == jl_false)
        if (args[1] != (jl_value_t*)jl_not_atomic_sym)
            jl_atomic_error("memoryref_isassigned!: non-atomic memory cannot be accessed atomically");
    if (m.mem->length == 0)
        return jl_false;
    return jl_memoryref_isassigned(m);
}

// type definition ------------------------------------------------------------

JL_CALLABLE(jl_f__structtype)
{
    JL_NARGS(_structtype, 7, 7);
    JL_TYPECHK(_structtype, module, args[0]);
    JL_TYPECHK(_structtype, symbol, args[1]);
    JL_TYPECHK(_structtype, simplevector, args[2]);
    JL_TYPECHK(_structtype, simplevector, args[3]);
    JL_TYPECHK(_structtype, simplevector, args[4]);
    JL_TYPECHK(_structtype, bool, args[5]);
    JL_TYPECHK(_structtype, long, args[6]);
    jl_value_t *fieldnames = args[3];
    jl_value_t *fieldattrs = args[4];
    jl_datatype_t *dt = NULL;
    dt = jl_new_datatype((jl_sym_t*)args[1], (jl_module_t*)args[0], NULL, (jl_svec_t*)args[2],
                         (jl_svec_t*)fieldnames, NULL, (jl_svec_t*)fieldattrs,
                         0, args[5]==jl_true ? 1 : 0, jl_unbox_long(args[6]));
    return dt->name->wrapper;
}

JL_CALLABLE(jl_f__abstracttype)
{
    JL_NARGS(_abstracttype, 3, 3);
    JL_TYPECHK(_abstracttype, module, args[0]);
    JL_TYPECHK(_abstracttype, symbol, args[1]);
    JL_TYPECHK(_abstracttype, simplevector, args[2]);
    jl_datatype_t *dt = jl_new_abstracttype(args[1], (jl_module_t*)args[0], NULL, (jl_svec_t*)args[2]);
    return dt->name->wrapper;
}

JL_CALLABLE(jl_f__primitivetype)
{
    JL_NARGS(_primitivetype, 4, 4);
    JL_TYPECHK(_primitivetype, module, args[0]);
    JL_TYPECHK(_primitivetype, symbol, args[1]);
    JL_TYPECHK(_primitivetype, simplevector, args[2]);
    jl_sym_t *name = (jl_sym_t*)args[1];
    jl_value_t *vnb = args[3];
    if (!jl_is_long(vnb))
        jl_errorf("invalid declaration of primitive type %s",
                  jl_symbol_name((jl_sym_t*)name));
    ssize_t nb = jl_unbox_long(vnb);
    if (nb < 1 || nb >= (1 << 23) || (nb & 7) != 0)
        jl_errorf("invalid number of bits in primitive type %s",
                  jl_symbol_name((jl_sym_t*)name));
    jl_datatype_t *dt = jl_new_primitivetype(args[1], (jl_module_t*)args[0], NULL, (jl_svec_t*)args[2], nb);
    return dt->name->wrapper;
}

static void jl_set_datatype_super(jl_datatype_t *tt, jl_value_t *super)
{
    const char *error = NULL;
    if (!jl_is_datatype(super))
        error = "can only subtype data types";
    else if (tt->super != NULL)
        error = "type already has a supertype";
    else if (tt->name == ((jl_datatype_t*)super)->name)
        error = "a type cannot subtype itself";
    else if (jl_is_tuple_type(super))
        error = "cannot subtype a tuple type";
    else if (jl_is_namedtuple_type(super))
        error = "cannot subtype a named tuple type";
    else if (jl_subtype(super, (jl_value_t*)jl_type_type))
        error = "cannot add subtypes to Type";
    else if (jl_subtype(super, (jl_value_t*)jl_builtin_type))
        error = "cannot add subtypes to Core.Builtin";
    else if (!jl_is_abstracttype(super))
        error = "can only subtype abstract types";
    if (error)
         jl_errorf("invalid subtyping in definition of %s: %s.", jl_symbol_name(tt->name->name), error);
    tt->super = (jl_datatype_t*)super;
    jl_gc_wb(tt, tt->super);
}

JL_CALLABLE(jl_f__setsuper)
{
    JL_NARGS(_setsuper!, 2, 2);
    jl_datatype_t *dt = (jl_datatype_t*)jl_unwrap_unionall(args[0]);
    JL_TYPECHK(_setsuper!, datatype, (jl_value_t*)dt);
    jl_set_datatype_super(dt, args[1]);
    return jl_nothing;
}

JL_CALLABLE(jl_f_donotdelete)
{
    return jl_nothing;
}

JL_CALLABLE(jl_f_compilerbarrier)
{
    JL_NARGS(compilerbarrier, 2, 2);
    JL_TYPECHK(compilerbarrier, symbol, args[0])
    jl_sym_t *setting = (jl_sym_t*)args[0];
    if (!(setting == jl_symbol("type") ||
          setting == jl_symbol("const") ||
          setting == jl_symbol("conditional")))
        jl_error("The first argument of `compilerbarrier` must be either of `:type`, `:const` or `:conditional`.");
    jl_value_t *val = args[1];
    return val;
}

JL_CALLABLE(jl_f_finalizer)
{
    // NOTE the compiler may temporarily insert additional argument for the later inlining pass
    JL_NARGS(finalizer, 2, 4);
    jl_task_t *ct = jl_current_task;
    jl_gc_add_finalizer_(ct->ptls, args[1], args[0]);
    return jl_nothing;
}

JL_CALLABLE(jl_f__compute_sparams)
{
    JL_NARGSV(_compute_sparams, 1);
    jl_method_t *m = (jl_method_t*)args[0];
    JL_TYPECHK(_compute_sparams, method, (jl_value_t*)m);
    jl_datatype_t *tt = jl_inst_arg_tuple_type(args[1], &args[2], nargs-1, 1);
    jl_svec_t *env = jl_emptysvec;
    JL_GC_PUSH2(&env, &tt);
    jl_type_intersection_env((jl_value_t*)tt, m->sig, &env);
    JL_GC_POP();
    return (jl_value_t*)env;
}

JL_CALLABLE(jl_f__svec_ref)
{
    JL_NARGS(_svec_ref, 2, 2);
    jl_svec_t *s = (jl_svec_t*)args[0];
    jl_value_t *i = (jl_value_t*)args[1];
    JL_TYPECHK(_svec_ref, simplevector, (jl_value_t*)s);
    JL_TYPECHK(_svec_ref, long, i);
    size_t len = jl_svec_len(s);
    ssize_t idx = jl_unbox_long(i);
    if (idx < 1 || idx > len) {
        jl_bounds_error_int((jl_value_t*)s, idx);
    }
    return jl_svec_ref(s, idx-1);
}

static int equiv_field_types(jl_value_t *old, jl_value_t *ft)
{
    size_t nf = jl_svec_len(ft);
    if (jl_svec_len(old) != nf)
        return 0;
    size_t i;
    for (i = 0; i < nf; i++) {
        jl_value_t *ta = jl_svecref(old, i);
        jl_value_t *tb = jl_svecref(ft, i);
        if (jl_has_free_typevars(ta)) {
            if (!jl_has_free_typevars(tb) || !jl_egal(ta, tb))
                return 0;
        }
        else if (jl_has_free_typevars(tb) || jl_typetagof(ta) != jl_typetagof(tb) ||
                 !jl_types_equal(ta, tb)) {
            return 0;
        }
    }
    return 1;
}

// If a field can reference its enclosing type, then the inlining
// recursive depth is not statically bounded for some layouts, so we cannot
// inline it. The only way fields can reference this type (due to
// syntax-enforced restrictions) is via being passed as a type parameter. Thus
// we can conservatively check this by examining only the parameters of the
// dependent types. Additionally, a field might have already observed this
// object for layout purposes before we got around to deciding if inlining
// would be possible, so we cannot change the layout now if so.
// affects_layout is a (conservative) analysis of layout_uses_free_typevars
// freevars is a (conservative) analysis of what calling jl_has_bound_typevars from name->wrapper gives (TODO: just call this instead?)
static int references_name(jl_value_t *p, jl_typename_t *name, int affects_layout, int freevars) JL_NOTSAFEPOINT
{
    if (freevars && !jl_has_free_typevars(p))
        freevars = 0;
    while (jl_is_unionall(p)) {
        if (references_name((jl_value_t*)((jl_unionall_t*)p)->var->lb, name, 0, freevars) ||
            references_name((jl_value_t*)((jl_unionall_t*)p)->var->ub, name, 0, freevars))
            return 1;
       p = ((jl_unionall_t*)p)->body;
    }
    if (jl_is_uniontype(p)) {
        return references_name(((jl_uniontype_t*)p)->a, name, affects_layout, freevars) ||
               references_name(((jl_uniontype_t*)p)->b, name, affects_layout, freevars);
    }
    if (jl_is_typevar(p))
        return 0; // already checked by unionall, if applicable
    if (jl_is_datatype(p)) {
        jl_datatype_t *dp = (jl_datatype_t*)p;
        if (affects_layout && dp->name == name)
            return 1;
        affects_layout = jl_is_genericmemory_type(dp) || ((jl_datatype_t*)jl_unwrap_unionall(dp->name->wrapper))->layout == NULL;
        // and even if it has a layout, the fields themselves might trigger layouts if they use tparam i
        // rather than checking this for each field, we just assume it applies
        if (!affects_layout && freevars && jl_field_names(dp) != jl_emptysvec) {
            jl_svec_t *types = ((jl_datatype_t*)jl_unwrap_unionall(dp->name->wrapper))->types;
            size_t i, l = jl_svec_len(types);
            for (i = 0; i < l; i++) {
                jl_value_t *ft = jl_svecref(types, i);
                if (!jl_is_typevar(ft) && jl_has_free_typevars(ft)) {
                    affects_layout = 1;
                    break;
                }
            }
        }
        size_t i, l = jl_nparams(p);
        for (i = 0; i < l; i++) {
            if (references_name(jl_tparam(p, i), name, affects_layout, freevars))
                return 1;
        }
    }
    return 0;
}


JL_CALLABLE(jl_f__typebody)
{
    JL_NARGS(_typebody!, 1, 2);
    jl_datatype_t *dt = (jl_datatype_t*)jl_unwrap_unionall(args[0]);
    JL_TYPECHK(_typebody!, datatype, (jl_value_t*)dt);
    if (nargs == 2) {
        jl_value_t *ft = args[1];
        JL_TYPECHK(_typebody!, simplevector, ft);
        size_t nf = jl_svec_len(ft);
        for (size_t i = 0; i < nf; i++) {
            jl_value_t *elt = jl_svecref(ft, i);
            if (!jl_is_type(elt) && !jl_is_typevar(elt)) {
                jl_type_error_rt(jl_symbol_name(dt->name->name),
                                 "type definition",
                                 (jl_value_t*)jl_type_type, elt);
            }
        }
        if (dt->types != NULL) {
            if (!equiv_field_types((jl_value_t*)dt->types, ft))
                jl_errorf("invalid redefinition of type %s", jl_symbol_name(dt->name->name));
        }
        else {
            dt->types = (jl_svec_t*)ft;
            jl_gc_wb(dt, ft);
            // If a supertype can reference the same type, then we may not be
            // able to compute the layout of the object before needing to
            // publish it, so we must assume it cannot be inlined, if that
            // check passes, then we also still need to check the fields too.
            if (!dt->name->mutabl && (nf == 0 || !references_name((jl_value_t*)dt->super, dt->name, 0, 1))) {
                int mayinlinealloc = 1;
                size_t i;
                for (i = 0; i < nf; i++) {
                    jl_value_t *fld = jl_svecref(ft, i);
                    if (references_name(fld, dt->name, 1, 1)) {
                        mayinlinealloc = 0;
                        break;
                    }
                }
                dt->name->mayinlinealloc = mayinlinealloc;
            }
        }
    }

    JL_TRY {
        jl_reinstantiate_inner_types(dt);
    }
    JL_CATCH {
        dt->name->partial = NULL;
        jl_rethrow();
    }

    if (jl_is_structtype(dt))
        jl_compute_field_offsets(dt);
    return jl_nothing;
}

// this is a heuristic for allowing "redefining" a type to something identical
static int equiv_type(jl_value_t *ta, jl_value_t *tb)
{
    jl_datatype_t *dta = (jl_datatype_t*)jl_unwrap_unionall(ta);
    if (!jl_is_datatype(dta))
        return 0;
    jl_datatype_t *dtb = (jl_datatype_t*)jl_unwrap_unionall(tb);
    if (!(jl_typetagof(dta) == jl_typetagof(dtb) &&
          dta->name->name == dtb->name->name &&
          dta->name->abstract == dtb->name->abstract &&
          dta->name->mutabl == dtb->name->mutabl &&
          dta->name->n_uninitialized == dtb->name->n_uninitialized &&
          dta->isprimitivetype == dtb->isprimitivetype &&
          (!dta->isprimitivetype || dta->layout->size == dtb->layout->size) &&
          (dta->name->atomicfields == NULL
           ? dtb->name->atomicfields == NULL
           : (dtb->name->atomicfields != NULL &&
              memcmp(dta->name->atomicfields, dtb->name->atomicfields, (jl_svec_len(dta->name->names) + 31) / 32 * sizeof(uint32_t)) == 0)) &&
          (dta->name->constfields == NULL
           ? dtb->name->constfields == NULL
           : (dtb->name->constfields != NULL &&
              memcmp(dta->name->constfields, dtb->name->constfields, (jl_svec_len(dta->name->names) + 31) / 32 * sizeof(uint32_t)) == 0)) &&
          jl_egal((jl_value_t*)jl_field_names(dta), (jl_value_t*)jl_field_names(dtb)) &&
          jl_nparams(dta) == jl_nparams(dtb)))
        return 0;
    jl_value_t *a=NULL, *b=NULL;
    int ok = 1;
    JL_GC_PUSH2(&a, &b);
    a = jl_rewrap_unionall((jl_value_t*)dta->super, dta->name->wrapper);
    b = jl_rewrap_unionall((jl_value_t*)dtb->super, dtb->name->wrapper);
    if (!jl_types_equal(a, b))
        goto no;
    JL_TRY {
        a = jl_apply_type(dtb->name->wrapper, jl_svec_data(dta->parameters), jl_nparams(dta));
    }
    JL_CATCH {
        ok = 0;
    }
    if (!ok)
        goto no;
    assert(jl_is_datatype(a));
    a = dta->name->wrapper;
    b = dtb->name->wrapper;
    while (jl_is_unionall(a)) {
        jl_unionall_t *ua = (jl_unionall_t*)a;
        jl_unionall_t *ub = (jl_unionall_t*)b;
        if (!jl_types_egal(ua->var->lb, ub->var->lb) || !jl_types_egal(ua->var->ub, ub->var->ub) ||
            ua->var->name != ub->var->name)
            goto no;
        a = jl_instantiate_unionall(ua, (jl_value_t*)ub->var);
        b = ub->body;
    }
    JL_GC_POP();
    return 1;
 no:
    JL_GC_POP();
    return 0;
}

JL_CALLABLE(jl_f__equiv_typedef)
{
    JL_NARGS(_equiv_typedef, 2, 2);
    return equiv_type(args[0], args[1]) ? jl_true : jl_false;
}

// IntrinsicFunctions ---------------------------------------------------------

static void (*runtime_fp[num_intrinsics])(void);
static unsigned intrinsic_nargs[num_intrinsics];

JL_CALLABLE(jl_f_intrinsic_call)
{
    enum intrinsic f = (enum intrinsic)*(uint32_t*)jl_data_ptr(F);
    if (f == cglobal && nargs == 1)
        f = cglobal_auto;
    unsigned fargs = intrinsic_nargs[f];
    if (!fargs)
        jl_errorf("`%s` requires the compiler", jl_intrinsic_name(f));
    JL_NARGS(intrinsic_call, fargs, fargs);

    union {
        void (*fptr)(void);
        jl_value_t *(*call1)(jl_value_t*);
        jl_value_t *(*call2)(jl_value_t*, jl_value_t*);
        jl_value_t *(*call3)(jl_value_t*, jl_value_t*, jl_value_t*);
        jl_value_t *(*call4)(jl_value_t*, jl_value_t*, jl_value_t*, jl_value_t*);
        jl_value_t *(*call5)(jl_value_t*, jl_value_t*, jl_value_t*, jl_value_t*, jl_value_t*);
    } fptr;
    fptr.fptr = runtime_fp[f];
    switch (fargs) {
        case 1:
            return fptr.call1(args[0]);
        case 2:
            return fptr.call2(args[0], args[1]);
        case 3:
            return fptr.call3(args[0], args[1], args[2]);
        case 4:
            return fptr.call4(args[0], args[1], args[2], args[3]);
        case 5:
            return fptr.call5(args[0], args[1], args[2], args[3], args[4]);
        default:
            assert(0 && "unexpected number of arguments to an intrinsic function");
    }
    jl_gc_debug_critical_error();
    abort();
}

JL_DLLEXPORT const char *jl_intrinsic_name(int f)
{
    switch ((enum intrinsic)f) {
    default: return "invalid";
#define ADD_I(func, nargs) case func: return #func;
#define ADD_HIDDEN ADD_I
#define ALIAS ADD_I
    INTRINSICS
#undef ADD_I
#undef ADD_HIDDEN
#undef ALIAS
    }
}

unsigned jl_intrinsic_nargs(int f)
{
    return intrinsic_nargs[f];
}

// init -----------------------------------------------------------------------

static void add_intrinsic_properties(enum intrinsic f, unsigned nargs, void (*pfunc)(void))
{
    assert(nargs <= 5 && "jl_f_intrinsic_call only implements up to 5 args");
    intrinsic_nargs[f] = nargs;
    runtime_fp[f] = pfunc;
}

static void add_intrinsic(jl_module_t *inm, const char *name, enum intrinsic f) JL_GC_DISABLED
{
    jl_value_t *i = jl_permbox32(jl_intrinsic_type, 0, (int32_t)f);
    jl_sym_t *sym = jl_symbol(name);
    jl_set_const(inm, sym, i);
    jl_module_public(inm, sym, 1);
}

void jl_init_intrinsic_properties(void) JL_GC_DISABLED
{
#define ADD_I(name, nargs) add_intrinsic_properties(name, nargs, (void(*)(void))&jl_##name);
#define ADD_HIDDEN ADD_I
#define ALIAS(alias, base) add_intrinsic_properties(alias, intrinsic_nargs[base], runtime_fp[base]);
    INTRINSICS
#undef ADD_I
#undef ADD_HIDDEN
#undef ALIAS
}

void jl_init_intrinsic_functions(void) JL_GC_DISABLED
{
    jl_module_t *inm = jl_new_module(jl_symbol("Intrinsics"), NULL);
    inm->parent = jl_core_module;
    jl_set_const(jl_core_module, jl_symbol("Intrinsics"), (jl_value_t*)inm);
    jl_mk_builtin_func(jl_intrinsic_type, "IntrinsicFunction", jl_f_intrinsic_call);
    jl_mk_builtin_func(
        (jl_datatype_t*)jl_unwrap_unionall((jl_value_t*)jl_opaque_closure_type),
        "OpaqueClosure", jl_f_opaque_closure_call);

    // Save a reference to the just created OpaqueClosure method, so we can provide special
    // codegen for it later.
    jl_opaque_closure_method = (jl_method_t*)jl_methtable_lookup(jl_opaque_closure_typename->mt,
        (jl_value_t*)jl_anytuple_type, 1);

#define ADD_I(name, nargs) add_intrinsic(inm, #name, name);
#define ADD_HIDDEN(name, nargs)
#define ALIAS ADD_I
    INTRINSICS
#undef ADD_I
#undef ADD_HIDDEN
#undef ALIAS
}

static void add_builtin(const char *name, jl_value_t *v)
{
    jl_set_const(jl_core_module, jl_symbol(name), v);
}

jl_fptr_args_t jl_get_builtin_fptr(jl_datatype_t *dt)
{
    assert(jl_subtype((jl_value_t*)dt, (jl_value_t*)jl_builtin_type));
    jl_typemap_entry_t *entry = (jl_typemap_entry_t*)jl_atomic_load_relaxed(&dt->name->mt->defs);
    jl_method_instance_t *mi = jl_atomic_load_relaxed(&entry->func.method->unspecialized);
    jl_code_instance_t *ci = jl_atomic_load_relaxed(&mi->cache);
    return jl_atomic_load_relaxed(&ci->specptr.fptr1);
}

static jl_value_t *add_builtin_func(const char *name, jl_fptr_args_t fptr)
{
    return jl_mk_builtin_func(NULL, name, fptr)->instance;
}

void jl_init_primitives(void) JL_GC_DISABLED
{
    jl_builtin_is = add_builtin_func("===", jl_f_is);
    jl_builtin_typeof = add_builtin_func("typeof", jl_f_typeof);
    jl_builtin_sizeof = add_builtin_func("sizeof", jl_f_sizeof);
    jl_builtin_issubtype = add_builtin_func("<:", jl_f_issubtype);
    jl_builtin_isa = add_builtin_func("isa", jl_f_isa);
    jl_builtin_typeassert = add_builtin_func("typeassert", jl_f_typeassert);
    jl_builtin_throw = add_builtin_func("throw", jl_f_throw);
    jl_builtin_tuple = add_builtin_func("tuple", jl_f_tuple);
    jl_builtin_ifelse = add_builtin_func("ifelse", jl_f_ifelse);

    // field access
    jl_builtin_getfield = add_builtin_func("getfield",  jl_f_getfield);
    jl_builtin_setfield = add_builtin_func("setfield!",  jl_f_setfield);
    jl_builtin_swapfield = add_builtin_func("swapfield!",  jl_f_swapfield);
    jl_builtin_modifyfield = add_builtin_func("modifyfield!",  jl_f_modifyfield);
    jl_builtin_replacefield = add_builtin_func("replacefield!",  jl_f_replacefield);
    jl_builtin_fieldtype = add_builtin_func("fieldtype", jl_f_fieldtype);
    jl_builtin_nfields = add_builtin_func("nfields", jl_f_nfields);
    jl_builtin_isdefined = add_builtin_func("isdefined", jl_f_isdefined);

    // module bindings
    jl_builtin_getglobal = add_builtin_func("getglobal", jl_f_getglobal);
    jl_builtin_setglobal = add_builtin_func("setglobal!", jl_f_setglobal);
    add_builtin_func("get_binding_type", jl_f_get_binding_type);
    add_builtin_func("set_binding_type!", jl_f_set_binding_type);

    // memory primitives
    jl_builtin_memoryref = add_builtin_func("memoryref", jl_f_memoryref);
    jl_builtin_memoryrefoffset = add_builtin_func("memoryrefoffset", jl_f_memoryrefoffset);
    jl_builtin_memoryrefget = add_builtin_func("memoryrefget", jl_f_memoryrefget);
    jl_builtin_memoryrefset = add_builtin_func("memoryrefset!", jl_f_memoryrefset);
    jl_builtin_memoryref_isassigned = add_builtin_func("memoryref_isassigned", jl_f_memoryref_isassigned);

    // method table utils
    jl_builtin_applicable = add_builtin_func("applicable", jl_f_applicable);
    jl_builtin_invoke = add_builtin_func("invoke", jl_f_invoke);

    // internal functions
    jl_builtin_apply_type = add_builtin_func("apply_type", jl_f_apply_type);
    jl_builtin__apply_iterate = add_builtin_func("_apply_iterate", jl_f__apply_iterate);
    jl_builtin__expr = add_builtin_func("_expr", jl_f__expr);
    jl_builtin_svec = add_builtin_func("svec", jl_f_svec);
    add_builtin_func("_apply_pure", jl_f__apply_pure);
    add_builtin_func("_call_latest", jl_f__call_latest);
    add_builtin_func("_call_in_world", jl_f__call_in_world);
    add_builtin_func("_call_in_world_total", jl_f__call_in_world_total);
    add_builtin_func("_typevar", jl_f__typevar);
    add_builtin_func("_structtype", jl_f__structtype);
    add_builtin_func("_abstracttype", jl_f__abstracttype);
    add_builtin_func("_primitivetype", jl_f__primitivetype);
    add_builtin_func("_setsuper!", jl_f__setsuper);
    jl_builtin__typebody = add_builtin_func("_typebody!", jl_f__typebody);
    add_builtin_func("_equiv_typedef", jl_f__equiv_typedef);
    jl_builtin_donotdelete = add_builtin_func("donotdelete", jl_f_donotdelete);
    jl_builtin_compilerbarrier = add_builtin_func("compilerbarrier", jl_f_compilerbarrier);
    add_builtin_func("finalizer", jl_f_finalizer);
    add_builtin_func("_compute_sparams", jl_f__compute_sparams);
    add_builtin_func("_svec_ref", jl_f__svec_ref);

    // builtin types
    add_builtin("Any", (jl_value_t*)jl_any_type);
    add_builtin("Type", (jl_value_t*)jl_type_type);
    add_builtin("Nothing", (jl_value_t*)jl_nothing_type);
    add_builtin("nothing", (jl_value_t*)jl_nothing);
    add_builtin("TypeName", (jl_value_t*)jl_typename_type);
    add_builtin("DataType", (jl_value_t*)jl_datatype_type);
    add_builtin("TypeVar", (jl_value_t*)jl_tvar_type);
    add_builtin("UnionAll", (jl_value_t*)jl_unionall_type);
    add_builtin("Union", (jl_value_t*)jl_uniontype_type);
    add_builtin("TypeofBottom", (jl_value_t*)jl_typeofbottom_type);
    add_builtin("Tuple", (jl_value_t*)jl_anytuple_type);
    add_builtin("TypeofVararg", (jl_value_t*)jl_vararg_type);
    add_builtin("SimpleVector", (jl_value_t*)jl_simplevector_type);
    add_builtin("Vararg", (jl_value_t*)jl_wrap_vararg(NULL, NULL, 0));

    add_builtin("Module", (jl_value_t*)jl_module_type);
    add_builtin("MethodTable", (jl_value_t*)jl_methtable_type);
    add_builtin("Method", (jl_value_t*)jl_method_type);
    add_builtin("CodeInstance", (jl_value_t*)jl_code_instance_type);
    add_builtin("TypeMapEntry", (jl_value_t*)jl_typemap_entry_type);
    add_builtin("TypeMapLevel", (jl_value_t*)jl_typemap_level_type);
    add_builtin("Symbol", (jl_value_t*)jl_symbol_type);
    add_builtin("SSAValue", (jl_value_t*)jl_ssavalue_type);
    add_builtin("SlotNumber", (jl_value_t*)jl_slotnumber_type);
    add_builtin("Argument", (jl_value_t*)jl_argument_type);
    add_builtin("Const", (jl_value_t*)jl_const_type);
    add_builtin("PartialStruct", (jl_value_t*)jl_partial_struct_type);
    add_builtin("PartialOpaque", (jl_value_t*)jl_partial_opaque_type);
    add_builtin("InterConditional", (jl_value_t*)jl_interconditional_type);
    add_builtin("MethodMatch", (jl_value_t*)jl_method_match_type);
    add_builtin("IntrinsicFunction", (jl_value_t*)jl_intrinsic_type);
    add_builtin("Function", (jl_value_t*)jl_function_type);
    add_builtin("Builtin", (jl_value_t*)jl_builtin_type);
    add_builtin("MethodInstance", (jl_value_t*)jl_method_instance_type);
    add_builtin("CodeInfo", (jl_value_t*)jl_code_info_type);
    add_builtin("LLVMPtr", (jl_value_t*)jl_llvmpointer_type);
    add_builtin("Task", (jl_value_t*)jl_task_type);
    add_builtin("OpaqueClosure", (jl_value_t*)jl_opaque_closure_type);

    add_builtin("AddrSpace", (jl_value_t*)jl_addrspace_type);
    add_builtin("Ref", (jl_value_t*)jl_ref_type);
    add_builtin("Ptr", (jl_value_t*)jl_pointer_type);
    //add_builtin("GenericPtr", (jl_value_t*)jl_genericpointer_type);
    add_builtin("AbstractArray", (jl_value_t*)jl_abstractarray_type);
    add_builtin("DenseArray", (jl_value_t*)jl_densearray_type);
    add_builtin("Array", (jl_value_t*)jl_array_type);
    add_builtin("GenericMemory", (jl_value_t*)jl_genericmemory_type);
    add_builtin("GenericMemoryRef", (jl_value_t*)jl_genericmemoryref_type);

    add_builtin("Expr", (jl_value_t*)jl_expr_type);
    add_builtin("LineNumberNode", (jl_value_t*)jl_linenumbernode_type);
    add_builtin("LineInfoNode", (jl_value_t*)jl_lineinfonode_type);
    add_builtin("GotoNode", (jl_value_t*)jl_gotonode_type);
    add_builtin("GotoIfNot", (jl_value_t*)jl_gotoifnot_type);
    add_builtin("ReturnNode", (jl_value_t*)jl_returnnode_type);
    add_builtin("PiNode", (jl_value_t*)jl_pinode_type);
    add_builtin("PhiNode", (jl_value_t*)jl_phinode_type);
    add_builtin("PhiCNode", (jl_value_t*)jl_phicnode_type);
    add_builtin("UpsilonNode", (jl_value_t*)jl_upsilonnode_type);
    add_builtin("QuoteNode", (jl_value_t*)jl_quotenode_type);
    add_builtin("NewvarNode", (jl_value_t*)jl_newvarnode_type);
    add_builtin("Binding", (jl_value_t*)jl_binding_type);
    add_builtin("GlobalRef", (jl_value_t*)jl_globalref_type);
    add_builtin("NamedTuple", (jl_value_t*)jl_namedtuple_type);

    add_builtin("Bool", (jl_value_t*)jl_bool_type);
    add_builtin("UInt8", (jl_value_t*)jl_uint8_type);
    add_builtin("UInt16", (jl_value_t*)jl_uint16_type);
    add_builtin("UInt32", (jl_value_t*)jl_uint32_type);
    add_builtin("UInt64", (jl_value_t*)jl_uint64_type);
    add_builtin("Int32", (jl_value_t*)jl_int32_type);
    add_builtin("Int64", (jl_value_t*)jl_int64_type);
#ifdef _P64
    add_builtin("Int", (jl_value_t*)jl_int64_type);
#else
    add_builtin("Int", (jl_value_t*)jl_int32_type);
#endif

    add_builtin("AbstractString", (jl_value_t*)jl_abstractstring_type);
    add_builtin("String", (jl_value_t*)jl_string_type);
}

#ifdef __cplusplus
}
#endif
back to top