Revision 706a1ea65e6faaf853427a0e931f59d604dd45e3 authored by Linus Torvalds on 23 August 2018, 21:55:01 UTC, committed by Linus Torvalds on 23 August 2018, 21:55:01 UTC
Merge fixes for missing TLB shootdowns.

This fixes a couple of cases that involved us possibly freeing page
table structures before the required TLB shootdown had been done.

There are a few cleanup patches to make the code easier to follow, and
to avoid some of the more problematic cases entirely when not necessary.

To make this easier for backports, it undoes the recent lazy TLB
patches, because the cleanups and fixes are more important, and Rik is
ok with re-doing them later when things have calmed down.

The missing TLB flush was only delayed, and the wrong ordering only
happened under memory pressure (and in theory under a couple of other
fairly theoretical situations), so this may have been all very unlikely
to have hit people in practice.

But getting the TLB shootdown wrong is _so_ hard to debug and see that I
consider this a crticial fix.

Many thanks to Jann Horn for having debugged this.

* tlb-fixes:
  x86/mm: Only use tlb_remove_table() for paravirt
  mm: mmu_notifier fix for tlb_end_vma
  mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE
  mm/tlb: Remove tlb_remove_table() non-concurrent condition
  mm: move tlb_table_flush to tlb_flush_mmu_free
  x86/mm/tlb: Revert the recent lazy TLB patches
2 parent s d40acad + 48a8b97
Raw File
io-mapping.txt
========================
The io_mapping functions
========================

API
===

The io_mapping functions in linux/io-mapping.h provide an abstraction for
efficiently mapping small regions of an I/O device to the CPU. The initial
usage is to support the large graphics aperture on 32-bit processors where
ioremap_wc cannot be used to statically map the entire aperture to the CPU
as it would consume too much of the kernel address space.

A mapping object is created during driver initialization using::

	struct io_mapping *io_mapping_create_wc(unsigned long base,
						unsigned long size)

'base' is the bus address of the region to be made
mappable, while 'size' indicates how large a mapping region to
enable. Both are in bytes.

This _wc variant provides a mapping which may only be used
with the io_mapping_map_atomic_wc or io_mapping_map_wc.

With this mapping object, individual pages can be mapped either atomically
or not, depending on the necessary scheduling environment. Of course, atomic
maps are more efficient::

	void *io_mapping_map_atomic_wc(struct io_mapping *mapping,
				       unsigned long offset)

'offset' is the offset within the defined mapping region.
Accessing addresses beyond the region specified in the
creation function yields undefined results. Using an offset
which is not page aligned yields an undefined result. The
return value points to a single page in CPU address space.

This _wc variant returns a write-combining map to the
page and may only be used with mappings created by
io_mapping_create_wc

Note that the task may not sleep while holding this page
mapped.

::

	void io_mapping_unmap_atomic(void *vaddr)

'vaddr' must be the value returned by the last
io_mapping_map_atomic_wc call. This unmaps the specified
page and allows the task to sleep once again.

If you need to sleep while holding the lock, you can use the non-atomic
variant, although they may be significantly slower.

::

	void *io_mapping_map_wc(struct io_mapping *mapping,
				unsigned long offset)

This works like io_mapping_map_atomic_wc except it allows
the task to sleep while holding the page mapped.


::

	void io_mapping_unmap(void *vaddr)

This works like io_mapping_unmap_atomic, except it is used
for pages mapped with io_mapping_map_wc.

At driver close time, the io_mapping object must be freed::

	void io_mapping_free(struct io_mapping *mapping)

Current Implementation
======================

The initial implementation of these functions uses existing mapping
mechanisms and so provides only an abstraction layer and no new
functionality.

On 64-bit processors, io_mapping_create_wc calls ioremap_wc for the whole
range, creating a permanent kernel-visible mapping to the resource. The
map_atomic and map functions add the requested offset to the base of the
virtual address returned by ioremap_wc.

On 32-bit processors with HIGHMEM defined, io_mapping_map_atomic_wc uses
kmap_atomic_pfn to map the specified page in an atomic fashion;
kmap_atomic_pfn isn't really supposed to be used with device pages, but it
provides an efficient mapping for this usage.

On 32-bit processors without HIGHMEM defined, io_mapping_map_atomic_wc and
io_mapping_map_wc both use ioremap_wc, a terribly inefficient function which
performs an IPI to inform all processors about the new mapping. This results
in a significant performance penalty.
back to top