Revision 70e6e1b971e46f5c1c2d72217ba62401a2edc22b authored by Linus Torvalds on 20 July 2019, 17:33:44 UTC, committed by Linus Torvalds on 20 July 2019, 17:33:44 UTC
Pull CONFIG_PREEMPT_RT stub config from Thomas Gleixner:
 "The real-time preemption patch set exists for almost 15 years now and
  while the vast majority of infrastructure and enhancements have found
  their way into the mainline kernel, the final integration of RT is
  still missing.

  Over the course of the last few years, we have worked on reducing the
  intrusivenness of the RT patches by refactoring kernel infrastructure
  to be more real-time friendly. Almost all of these changes were
  benefitial to the mainline kernel on their own, so there was no
  objection to integrate them.

  Though except for the still ongoing printk refactoring, the remaining
  changes which are required to make RT a first class mainline citizen
  are not longer arguable as immediately beneficial for the mainline
  kernel. Most of them are either reordering code flows or adding RT
  specific functionality.

  But this now has hit a wall and turned into a classic hen and egg
  problem:

     Maintainers are rightfully wary vs. these changes as they make only
     sense if the final integration of RT into the mainline kernel takes
     place.

  Adding CONFIG_PREEMPT_RT aims to solve this as a clear sign that RT
  will be fully integrated into the mainline kernel. The final
  integration of the missing bits and pieces will be of course done with
  the same careful approach as we have used in the past.

  While I'm aware that you are not entirely enthusiastic about that, I
  think that RT should receive the same treatment as any other widely
  used out of tree functionality, which we have accepted into mainline
  over the years.

  RT has become the de-facto standard real-time enhancement and is
  shipped by enterprise, embedded and community distros. It's in use
  throughout a wide range of industries: telecommunications, industrial
  automation, professional audio, medical devices, data acquisition,
  automotive - just to name a few major use cases.

  RT development is backed by a Linuxfoundation project which is
  supported by major stakeholders of this technology. The funding will
  continue over the actual inclusion into mainline to make sure that the
  functionality is neither introducing regressions, regressing itself,
  nor becomes subject to bitrot. There is also a lifely user community
  around RT as well, so contrary to the grim situation 5 years ago, it's
  a healthy project.

  As RT is still a good vehicle to exercise rarely used code paths and
  to detect hard to trigger issues, you could at least view it as a QA
  tool if nothing else"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT
2 parent s 07ab9d5 + a50a3f4
Raw File
algapi.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Cryptographic API for algorithms (i.e., low-level API).
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 */

#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/fips.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/string.h>

#include "internal.h"

static LIST_HEAD(crypto_template_list);

static inline void crypto_check_module_sig(struct module *mod)
{
	if (fips_enabled && mod && !module_sig_ok(mod))
		panic("Module %s signature verification failed in FIPS mode\n",
		      module_name(mod));
}

static int crypto_check_alg(struct crypto_alg *alg)
{
	crypto_check_module_sig(alg->cra_module);

	if (!alg->cra_name[0] || !alg->cra_driver_name[0])
		return -EINVAL;

	if (alg->cra_alignmask & (alg->cra_alignmask + 1))
		return -EINVAL;

	/* General maximums for all algs. */
	if (alg->cra_alignmask > MAX_ALGAPI_ALIGNMASK)
		return -EINVAL;

	if (alg->cra_blocksize > MAX_ALGAPI_BLOCKSIZE)
		return -EINVAL;

	/* Lower maximums for specific alg types. */
	if (!alg->cra_type && (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
			       CRYPTO_ALG_TYPE_CIPHER) {
		if (alg->cra_alignmask > MAX_CIPHER_ALIGNMASK)
			return -EINVAL;

		if (alg->cra_blocksize > MAX_CIPHER_BLOCKSIZE)
			return -EINVAL;
	}

	if (alg->cra_priority < 0)
		return -EINVAL;

	refcount_set(&alg->cra_refcnt, 1);

	return 0;
}

static void crypto_free_instance(struct crypto_instance *inst)
{
	if (!inst->alg.cra_type->free) {
		inst->tmpl->free(inst);
		return;
	}

	inst->alg.cra_type->free(inst);
}

static void crypto_destroy_instance(struct crypto_alg *alg)
{
	struct crypto_instance *inst = (void *)alg;
	struct crypto_template *tmpl = inst->tmpl;

	crypto_free_instance(inst);
	crypto_tmpl_put(tmpl);
}

static struct list_head *crypto_more_spawns(struct crypto_alg *alg,
					    struct list_head *stack,
					    struct list_head *top,
					    struct list_head *secondary_spawns)
{
	struct crypto_spawn *spawn, *n;

	spawn = list_first_entry_or_null(stack, struct crypto_spawn, list);
	if (!spawn)
		return NULL;

	n = list_next_entry(spawn, list);

	if (spawn->alg && &n->list != stack && !n->alg)
		n->alg = (n->list.next == stack) ? alg :
			 &list_next_entry(n, list)->inst->alg;

	list_move(&spawn->list, secondary_spawns);

	return &n->list == stack ? top : &n->inst->alg.cra_users;
}

static void crypto_remove_instance(struct crypto_instance *inst,
				   struct list_head *list)
{
	struct crypto_template *tmpl = inst->tmpl;

	if (crypto_is_dead(&inst->alg))
		return;

	inst->alg.cra_flags |= CRYPTO_ALG_DEAD;
	if (hlist_unhashed(&inst->list))
		return;

	if (!tmpl || !crypto_tmpl_get(tmpl))
		return;

	list_move(&inst->alg.cra_list, list);
	hlist_del(&inst->list);
	inst->alg.cra_destroy = crypto_destroy_instance;

	BUG_ON(!list_empty(&inst->alg.cra_users));
}

void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list,
			  struct crypto_alg *nalg)
{
	u32 new_type = (nalg ?: alg)->cra_flags;
	struct crypto_spawn *spawn, *n;
	LIST_HEAD(secondary_spawns);
	struct list_head *spawns;
	LIST_HEAD(stack);
	LIST_HEAD(top);

	spawns = &alg->cra_users;
	list_for_each_entry_safe(spawn, n, spawns, list) {
		if ((spawn->alg->cra_flags ^ new_type) & spawn->mask)
			continue;

		list_move(&spawn->list, &top);
	}

	spawns = &top;
	do {
		while (!list_empty(spawns)) {
			struct crypto_instance *inst;

			spawn = list_first_entry(spawns, struct crypto_spawn,
						 list);
			inst = spawn->inst;

			BUG_ON(&inst->alg == alg);

			list_move(&spawn->list, &stack);

			if (&inst->alg == nalg)
				break;

			spawn->alg = NULL;
			spawns = &inst->alg.cra_users;

			/*
			 * We may encounter an unregistered instance here, since
			 * an instance's spawns are set up prior to the instance
			 * being registered.  An unregistered instance will have
			 * NULL ->cra_users.next, since ->cra_users isn't
			 * properly initialized until registration.  But an
			 * unregistered instance cannot have any users, so treat
			 * it the same as ->cra_users being empty.
			 */
			if (spawns->next == NULL)
				break;
		}
	} while ((spawns = crypto_more_spawns(alg, &stack, &top,
					      &secondary_spawns)));

	list_for_each_entry_safe(spawn, n, &secondary_spawns, list) {
		if (spawn->alg)
			list_move(&spawn->list, &spawn->alg->cra_users);
		else
			crypto_remove_instance(spawn->inst, list);
	}
}
EXPORT_SYMBOL_GPL(crypto_remove_spawns);

static struct crypto_larval *__crypto_register_alg(struct crypto_alg *alg)
{
	struct crypto_alg *q;
	struct crypto_larval *larval;
	int ret = -EAGAIN;

	if (crypto_is_dead(alg))
		goto err;

	INIT_LIST_HEAD(&alg->cra_users);

	/* No cheating! */
	alg->cra_flags &= ~CRYPTO_ALG_TESTED;

	ret = -EEXIST;

	list_for_each_entry(q, &crypto_alg_list, cra_list) {
		if (q == alg)
			goto err;

		if (crypto_is_moribund(q))
			continue;

		if (crypto_is_larval(q)) {
			if (!strcmp(alg->cra_driver_name, q->cra_driver_name))
				goto err;
			continue;
		}

		if (!strcmp(q->cra_driver_name, alg->cra_name) ||
		    !strcmp(q->cra_name, alg->cra_driver_name))
			goto err;
	}

	larval = crypto_larval_alloc(alg->cra_name,
				     alg->cra_flags | CRYPTO_ALG_TESTED, 0);
	if (IS_ERR(larval))
		goto out;

	ret = -ENOENT;
	larval->adult = crypto_mod_get(alg);
	if (!larval->adult)
		goto free_larval;

	refcount_set(&larval->alg.cra_refcnt, 1);
	memcpy(larval->alg.cra_driver_name, alg->cra_driver_name,
	       CRYPTO_MAX_ALG_NAME);
	larval->alg.cra_priority = alg->cra_priority;

	list_add(&alg->cra_list, &crypto_alg_list);
	list_add(&larval->alg.cra_list, &crypto_alg_list);

	crypto_stats_init(alg);

out:
	return larval;

free_larval:
	kfree(larval);
err:
	larval = ERR_PTR(ret);
	goto out;
}

void crypto_alg_tested(const char *name, int err)
{
	struct crypto_larval *test;
	struct crypto_alg *alg;
	struct crypto_alg *q;
	LIST_HEAD(list);

	down_write(&crypto_alg_sem);
	list_for_each_entry(q, &crypto_alg_list, cra_list) {
		if (crypto_is_moribund(q) || !crypto_is_larval(q))
			continue;

		test = (struct crypto_larval *)q;

		if (!strcmp(q->cra_driver_name, name))
			goto found;
	}

	pr_err("alg: Unexpected test result for %s: %d\n", name, err);
	goto unlock;

found:
	q->cra_flags |= CRYPTO_ALG_DEAD;
	alg = test->adult;
	if (err || list_empty(&alg->cra_list))
		goto complete;

	alg->cra_flags |= CRYPTO_ALG_TESTED;

	list_for_each_entry(q, &crypto_alg_list, cra_list) {
		if (q == alg)
			continue;

		if (crypto_is_moribund(q))
			continue;

		if (crypto_is_larval(q)) {
			struct crypto_larval *larval = (void *)q;

			/*
			 * Check to see if either our generic name or
			 * specific name can satisfy the name requested
			 * by the larval entry q.
			 */
			if (strcmp(alg->cra_name, q->cra_name) &&
			    strcmp(alg->cra_driver_name, q->cra_name))
				continue;

			if (larval->adult)
				continue;
			if ((q->cra_flags ^ alg->cra_flags) & larval->mask)
				continue;
			if (!crypto_mod_get(alg))
				continue;

			larval->adult = alg;
			continue;
		}

		if (strcmp(alg->cra_name, q->cra_name))
			continue;

		if (strcmp(alg->cra_driver_name, q->cra_driver_name) &&
		    q->cra_priority > alg->cra_priority)
			continue;

		crypto_remove_spawns(q, &list, alg);
	}

complete:
	complete_all(&test->completion);

unlock:
	up_write(&crypto_alg_sem);

	crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_alg_tested);

void crypto_remove_final(struct list_head *list)
{
	struct crypto_alg *alg;
	struct crypto_alg *n;

	list_for_each_entry_safe(alg, n, list, cra_list) {
		list_del_init(&alg->cra_list);
		crypto_alg_put(alg);
	}
}
EXPORT_SYMBOL_GPL(crypto_remove_final);

static void crypto_wait_for_test(struct crypto_larval *larval)
{
	int err;

	err = crypto_probing_notify(CRYPTO_MSG_ALG_REGISTER, larval->adult);
	if (err != NOTIFY_STOP) {
		if (WARN_ON(err != NOTIFY_DONE))
			goto out;
		crypto_alg_tested(larval->alg.cra_driver_name, 0);
	}

	err = wait_for_completion_killable(&larval->completion);
	WARN_ON(err);
	if (!err)
		crypto_probing_notify(CRYPTO_MSG_ALG_LOADED, larval);

out:
	crypto_larval_kill(&larval->alg);
}

int crypto_register_alg(struct crypto_alg *alg)
{
	struct crypto_larval *larval;
	int err;

	alg->cra_flags &= ~CRYPTO_ALG_DEAD;
	err = crypto_check_alg(alg);
	if (err)
		return err;

	down_write(&crypto_alg_sem);
	larval = __crypto_register_alg(alg);
	up_write(&crypto_alg_sem);

	if (IS_ERR(larval))
		return PTR_ERR(larval);

	crypto_wait_for_test(larval);
	return 0;
}
EXPORT_SYMBOL_GPL(crypto_register_alg);

static int crypto_remove_alg(struct crypto_alg *alg, struct list_head *list)
{
	if (unlikely(list_empty(&alg->cra_list)))
		return -ENOENT;

	alg->cra_flags |= CRYPTO_ALG_DEAD;

	list_del_init(&alg->cra_list);
	crypto_remove_spawns(alg, list, NULL);

	return 0;
}

int crypto_unregister_alg(struct crypto_alg *alg)
{
	int ret;
	LIST_HEAD(list);

	down_write(&crypto_alg_sem);
	ret = crypto_remove_alg(alg, &list);
	up_write(&crypto_alg_sem);

	if (ret)
		return ret;

	BUG_ON(refcount_read(&alg->cra_refcnt) != 1);
	if (alg->cra_destroy)
		alg->cra_destroy(alg);

	crypto_remove_final(&list);
	return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_alg);

int crypto_register_algs(struct crypto_alg *algs, int count)
{
	int i, ret;

	for (i = 0; i < count; i++) {
		ret = crypto_register_alg(&algs[i]);
		if (ret)
			goto err;
	}

	return 0;

err:
	for (--i; i >= 0; --i)
		crypto_unregister_alg(&algs[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_algs);

int crypto_unregister_algs(struct crypto_alg *algs, int count)
{
	int i, ret;

	for (i = 0; i < count; i++) {
		ret = crypto_unregister_alg(&algs[i]);
		if (ret)
			pr_err("Failed to unregister %s %s: %d\n",
			       algs[i].cra_driver_name, algs[i].cra_name, ret);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_algs);

int crypto_register_template(struct crypto_template *tmpl)
{
	struct crypto_template *q;
	int err = -EEXIST;

	down_write(&crypto_alg_sem);

	crypto_check_module_sig(tmpl->module);

	list_for_each_entry(q, &crypto_template_list, list) {
		if (q == tmpl)
			goto out;
	}

	list_add(&tmpl->list, &crypto_template_list);
	err = 0;
out:
	up_write(&crypto_alg_sem);
	return err;
}
EXPORT_SYMBOL_GPL(crypto_register_template);

int crypto_register_templates(struct crypto_template *tmpls, int count)
{
	int i, err;

	for (i = 0; i < count; i++) {
		err = crypto_register_template(&tmpls[i]);
		if (err)
			goto out;
	}
	return 0;

out:
	for (--i; i >= 0; --i)
		crypto_unregister_template(&tmpls[i]);
	return err;
}
EXPORT_SYMBOL_GPL(crypto_register_templates);

void crypto_unregister_template(struct crypto_template *tmpl)
{
	struct crypto_instance *inst;
	struct hlist_node *n;
	struct hlist_head *list;
	LIST_HEAD(users);

	down_write(&crypto_alg_sem);

	BUG_ON(list_empty(&tmpl->list));
	list_del_init(&tmpl->list);

	list = &tmpl->instances;
	hlist_for_each_entry(inst, list, list) {
		int err = crypto_remove_alg(&inst->alg, &users);

		BUG_ON(err);
	}

	up_write(&crypto_alg_sem);

	hlist_for_each_entry_safe(inst, n, list, list) {
		BUG_ON(refcount_read(&inst->alg.cra_refcnt) != 1);
		crypto_free_instance(inst);
	}
	crypto_remove_final(&users);
}
EXPORT_SYMBOL_GPL(crypto_unregister_template);

void crypto_unregister_templates(struct crypto_template *tmpls, int count)
{
	int i;

	for (i = count - 1; i >= 0; --i)
		crypto_unregister_template(&tmpls[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_templates);

static struct crypto_template *__crypto_lookup_template(const char *name)
{
	struct crypto_template *q, *tmpl = NULL;

	down_read(&crypto_alg_sem);
	list_for_each_entry(q, &crypto_template_list, list) {
		if (strcmp(q->name, name))
			continue;
		if (unlikely(!crypto_tmpl_get(q)))
			continue;

		tmpl = q;
		break;
	}
	up_read(&crypto_alg_sem);

	return tmpl;
}

struct crypto_template *crypto_lookup_template(const char *name)
{
	return try_then_request_module(__crypto_lookup_template(name),
				       "crypto-%s", name);
}
EXPORT_SYMBOL_GPL(crypto_lookup_template);

int crypto_register_instance(struct crypto_template *tmpl,
			     struct crypto_instance *inst)
{
	struct crypto_larval *larval;
	int err;

	err = crypto_check_alg(&inst->alg);
	if (err)
		return err;

	inst->alg.cra_module = tmpl->module;
	inst->alg.cra_flags |= CRYPTO_ALG_INSTANCE;

	down_write(&crypto_alg_sem);

	larval = __crypto_register_alg(&inst->alg);
	if (IS_ERR(larval))
		goto unlock;

	hlist_add_head(&inst->list, &tmpl->instances);
	inst->tmpl = tmpl;

unlock:
	up_write(&crypto_alg_sem);

	err = PTR_ERR(larval);
	if (IS_ERR(larval))
		goto err;

	crypto_wait_for_test(larval);
	err = 0;

err:
	return err;
}
EXPORT_SYMBOL_GPL(crypto_register_instance);

int crypto_unregister_instance(struct crypto_instance *inst)
{
	LIST_HEAD(list);

	down_write(&crypto_alg_sem);

	crypto_remove_spawns(&inst->alg, &list, NULL);
	crypto_remove_instance(inst, &list);

	up_write(&crypto_alg_sem);

	crypto_remove_final(&list);

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_instance);

int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
		      struct crypto_instance *inst, u32 mask)
{
	int err = -EAGAIN;

	if (WARN_ON_ONCE(inst == NULL))
		return -EINVAL;

	spawn->inst = inst;
	spawn->mask = mask;

	down_write(&crypto_alg_sem);
	if (!crypto_is_moribund(alg)) {
		list_add(&spawn->list, &alg->cra_users);
		spawn->alg = alg;
		err = 0;
	}
	up_write(&crypto_alg_sem);

	return err;
}
EXPORT_SYMBOL_GPL(crypto_init_spawn);

int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
		       struct crypto_instance *inst,
		       const struct crypto_type *frontend)
{
	int err = -EINVAL;

	if ((alg->cra_flags ^ frontend->type) & frontend->maskset)
		goto out;

	spawn->frontend = frontend;
	err = crypto_init_spawn(spawn, alg, inst, frontend->maskset);

out:
	return err;
}
EXPORT_SYMBOL_GPL(crypto_init_spawn2);

int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
		      u32 type, u32 mask)
{
	struct crypto_alg *alg;
	int err;

	alg = crypto_find_alg(name, spawn->frontend, type, mask);
	if (IS_ERR(alg))
		return PTR_ERR(alg);

	err = crypto_init_spawn(spawn, alg, spawn->inst, mask);
	crypto_mod_put(alg);
	return err;
}
EXPORT_SYMBOL_GPL(crypto_grab_spawn);

void crypto_drop_spawn(struct crypto_spawn *spawn)
{
	if (!spawn->alg)
		return;

	down_write(&crypto_alg_sem);
	list_del(&spawn->list);
	up_write(&crypto_alg_sem);
}
EXPORT_SYMBOL_GPL(crypto_drop_spawn);

static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn)
{
	struct crypto_alg *alg;
	struct crypto_alg *alg2;

	down_read(&crypto_alg_sem);
	alg = spawn->alg;
	alg2 = alg;
	if (alg2)
		alg2 = crypto_mod_get(alg2);
	up_read(&crypto_alg_sem);

	if (!alg2) {
		if (alg)
			crypto_shoot_alg(alg);
		return ERR_PTR(-EAGAIN);
	}

	return alg;
}

struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
				    u32 mask)
{
	struct crypto_alg *alg;
	struct crypto_tfm *tfm;

	alg = crypto_spawn_alg(spawn);
	if (IS_ERR(alg))
		return ERR_CAST(alg);

	tfm = ERR_PTR(-EINVAL);
	if (unlikely((alg->cra_flags ^ type) & mask))
		goto out_put_alg;

	tfm = __crypto_alloc_tfm(alg, type, mask);
	if (IS_ERR(tfm))
		goto out_put_alg;

	return tfm;

out_put_alg:
	crypto_mod_put(alg);
	return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm);

void *crypto_spawn_tfm2(struct crypto_spawn *spawn)
{
	struct crypto_alg *alg;
	struct crypto_tfm *tfm;

	alg = crypto_spawn_alg(spawn);
	if (IS_ERR(alg))
		return ERR_CAST(alg);

	tfm = crypto_create_tfm(alg, spawn->frontend);
	if (IS_ERR(tfm))
		goto out_put_alg;

	return tfm;

out_put_alg:
	crypto_mod_put(alg);
	return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm2);

int crypto_register_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_register_notifier);

int crypto_unregister_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_unregister_notifier);

struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb)
{
	struct rtattr *rta = tb[0];
	struct crypto_attr_type *algt;

	if (!rta)
		return ERR_PTR(-ENOENT);
	if (RTA_PAYLOAD(rta) < sizeof(*algt))
		return ERR_PTR(-EINVAL);
	if (rta->rta_type != CRYPTOA_TYPE)
		return ERR_PTR(-EINVAL);

	algt = RTA_DATA(rta);

	return algt;
}
EXPORT_SYMBOL_GPL(crypto_get_attr_type);

int crypto_check_attr_type(struct rtattr **tb, u32 type)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	if ((algt->type ^ type) & algt->mask)
		return -EINVAL;

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_check_attr_type);

const char *crypto_attr_alg_name(struct rtattr *rta)
{
	struct crypto_attr_alg *alga;

	if (!rta)
		return ERR_PTR(-ENOENT);
	if (RTA_PAYLOAD(rta) < sizeof(*alga))
		return ERR_PTR(-EINVAL);
	if (rta->rta_type != CRYPTOA_ALG)
		return ERR_PTR(-EINVAL);

	alga = RTA_DATA(rta);
	alga->name[CRYPTO_MAX_ALG_NAME - 1] = 0;

	return alga->name;
}
EXPORT_SYMBOL_GPL(crypto_attr_alg_name);

struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
				    const struct crypto_type *frontend,
				    u32 type, u32 mask)
{
	const char *name;

	name = crypto_attr_alg_name(rta);
	if (IS_ERR(name))
		return ERR_CAST(name);

	return crypto_find_alg(name, frontend, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_attr_alg2);

int crypto_attr_u32(struct rtattr *rta, u32 *num)
{
	struct crypto_attr_u32 *nu32;

	if (!rta)
		return -ENOENT;
	if (RTA_PAYLOAD(rta) < sizeof(*nu32))
		return -EINVAL;
	if (rta->rta_type != CRYPTOA_U32)
		return -EINVAL;

	nu32 = RTA_DATA(rta);
	*num = nu32->num;

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_attr_u32);

int crypto_inst_setname(struct crypto_instance *inst, const char *name,
			struct crypto_alg *alg)
{
	if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name,
		     alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
		     name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_inst_setname);

void *crypto_alloc_instance(const char *name, struct crypto_alg *alg,
			    unsigned int head)
{
	struct crypto_instance *inst;
	char *p;
	int err;

	p = kzalloc(head + sizeof(*inst) + sizeof(struct crypto_spawn),
		    GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	inst = (void *)(p + head);

	err = crypto_inst_setname(inst, name, alg);
	if (err)
		goto err_free_inst;

	return p;

err_free_inst:
	kfree(p);
	return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(crypto_alloc_instance);

void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen)
{
	INIT_LIST_HEAD(&queue->list);
	queue->backlog = &queue->list;
	queue->qlen = 0;
	queue->max_qlen = max_qlen;
}
EXPORT_SYMBOL_GPL(crypto_init_queue);

int crypto_enqueue_request(struct crypto_queue *queue,
			   struct crypto_async_request *request)
{
	int err = -EINPROGRESS;

	if (unlikely(queue->qlen >= queue->max_qlen)) {
		if (!(request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
			err = -ENOSPC;
			goto out;
		}
		err = -EBUSY;
		if (queue->backlog == &queue->list)
			queue->backlog = &request->list;
	}

	queue->qlen++;
	list_add_tail(&request->list, &queue->list);

out:
	return err;
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request);

struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue)
{
	struct list_head *request;

	if (unlikely(!queue->qlen))
		return NULL;

	queue->qlen--;

	if (queue->backlog != &queue->list)
		queue->backlog = queue->backlog->next;

	request = queue->list.next;
	list_del(request);

	return list_entry(request, struct crypto_async_request, list);
}
EXPORT_SYMBOL_GPL(crypto_dequeue_request);

static inline void crypto_inc_byte(u8 *a, unsigned int size)
{
	u8 *b = (a + size);
	u8 c;

	for (; size; size--) {
		c = *--b + 1;
		*b = c;
		if (c)
			break;
	}
}

void crypto_inc(u8 *a, unsigned int size)
{
	__be32 *b = (__be32 *)(a + size);
	u32 c;

	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
	    IS_ALIGNED((unsigned long)b, __alignof__(*b)))
		for (; size >= 4; size -= 4) {
			c = be32_to_cpu(*--b) + 1;
			*b = cpu_to_be32(c);
			if (likely(c))
				return;
		}

	crypto_inc_byte(a, size);
}
EXPORT_SYMBOL_GPL(crypto_inc);

void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
	int relalign = 0;

	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
		int size = sizeof(unsigned long);
		int d = (((unsigned long)dst ^ (unsigned long)src1) |
			 ((unsigned long)dst ^ (unsigned long)src2)) &
			(size - 1);

		relalign = d ? 1 << __ffs(d) : size;

		/*
		 * If we care about alignment, process as many bytes as
		 * needed to advance dst and src to values whose alignments
		 * equal their relative alignment. This will allow us to
		 * process the remainder of the input using optimal strides.
		 */
		while (((unsigned long)dst & (relalign - 1)) && len > 0) {
			*dst++ = *src1++ ^ *src2++;
			len--;
		}
	}

	while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) {
		*(u64 *)dst = *(u64 *)src1 ^  *(u64 *)src2;
		dst += 8;
		src1 += 8;
		src2 += 8;
		len -= 8;
	}

	while (len >= 4 && !(relalign & 3)) {
		*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
		dst += 4;
		src1 += 4;
		src2 += 4;
		len -= 4;
	}

	while (len >= 2 && !(relalign & 1)) {
		*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
		dst += 2;
		src1 += 2;
		src2 += 2;
		len -= 2;
	}

	while (len--)
		*dst++ = *src1++ ^ *src2++;
}
EXPORT_SYMBOL_GPL(__crypto_xor);

unsigned int crypto_alg_extsize(struct crypto_alg *alg)
{
	return alg->cra_ctxsize +
	       (alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1));
}
EXPORT_SYMBOL_GPL(crypto_alg_extsize);

int crypto_type_has_alg(const char *name, const struct crypto_type *frontend,
			u32 type, u32 mask)
{
	int ret = 0;
	struct crypto_alg *alg = crypto_find_alg(name, frontend, type, mask);

	if (!IS_ERR(alg)) {
		crypto_mod_put(alg);
		ret = 1;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(crypto_type_has_alg);

#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg)
{
	memset(&alg->stats, 0, sizeof(alg->stats));
}
EXPORT_SYMBOL_GPL(crypto_stats_init);

void crypto_stats_get(struct crypto_alg *alg)
{
	crypto_alg_get(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_get);

void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret,
				     struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.cipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.cipher.encrypt_cnt);
		atomic64_add(nbytes, &alg->stats.cipher.encrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ablkcipher_encrypt);

void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret,
				     struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.cipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.cipher.decrypt_cnt);
		atomic64_add(nbytes, &alg->stats.cipher.decrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ablkcipher_decrypt);

void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg,
			       int ret)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.aead.err_cnt);
	} else {
		atomic64_inc(&alg->stats.aead.encrypt_cnt);
		atomic64_add(cryptlen, &alg->stats.aead.encrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_encrypt);

void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg,
			       int ret)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.aead.err_cnt);
	} else {
		atomic64_inc(&alg->stats.aead.decrypt_cnt);
		atomic64_add(cryptlen, &alg->stats.aead.decrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_decrypt);

void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret,
				   struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.akcipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.akcipher.encrypt_cnt);
		atomic64_add(src_len, &alg->stats.akcipher.encrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_encrypt);

void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret,
				   struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.akcipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.akcipher.decrypt_cnt);
		atomic64_add(src_len, &alg->stats.akcipher.decrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_decrypt);

void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
		atomic64_inc(&alg->stats.akcipher.err_cnt);
	else
		atomic64_inc(&alg->stats.akcipher.sign_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_sign);

void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
		atomic64_inc(&alg->stats.akcipher.err_cnt);
	else
		atomic64_inc(&alg->stats.akcipher.verify_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_verify);

void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.compress.err_cnt);
	} else {
		atomic64_inc(&alg->stats.compress.compress_cnt);
		atomic64_add(slen, &alg->stats.compress.compress_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_compress);

void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.compress.err_cnt);
	} else {
		atomic64_inc(&alg->stats.compress.decompress_cnt);
		atomic64_add(slen, &alg->stats.compress.decompress_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_decompress);

void crypto_stats_ahash_update(unsigned int nbytes, int ret,
			       struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
		atomic64_inc(&alg->stats.hash.err_cnt);
	else
		atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_update);

void crypto_stats_ahash_final(unsigned int nbytes, int ret,
			      struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.hash.err_cnt);
	} else {
		atomic64_inc(&alg->stats.hash.hash_cnt);
		atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_final);

void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{
	if (ret)
		atomic64_inc(&alg->stats.kpp.err_cnt);
	else
		atomic64_inc(&alg->stats.kpp.setsecret_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_set_secret);

void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{
	if (ret)
		atomic64_inc(&alg->stats.kpp.err_cnt);
	else
		atomic64_inc(&alg->stats.kpp.generate_public_key_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_generate_public_key);

void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{
	if (ret)
		atomic64_inc(&alg->stats.kpp.err_cnt);
	else
		atomic64_inc(&alg->stats.kpp.compute_shared_secret_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_compute_shared_secret);

void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
		atomic64_inc(&alg->stats.rng.err_cnt);
	else
		atomic64_inc(&alg->stats.rng.seed_cnt);
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_seed);

void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen,
			       int ret)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.rng.err_cnt);
	} else {
		atomic64_inc(&alg->stats.rng.generate_cnt);
		atomic64_add(dlen, &alg->stats.rng.generate_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_generate);

void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret,
				   struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.cipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.cipher.encrypt_cnt);
		atomic64_add(cryptlen, &alg->stats.cipher.encrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_encrypt);

void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret,
				   struct crypto_alg *alg)
{
	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
		atomic64_inc(&alg->stats.cipher.err_cnt);
	} else {
		atomic64_inc(&alg->stats.cipher.decrypt_cnt);
		atomic64_add(cryptlen, &alg->stats.cipher.decrypt_tlen);
	}
	crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_decrypt);
#endif

static int __init crypto_algapi_init(void)
{
	crypto_init_proc();
	return 0;
}

static void __exit crypto_algapi_exit(void)
{
	crypto_exit_proc();
}

module_init(crypto_algapi_init);
module_exit(crypto_algapi_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cryptographic algorithms API");
back to top