Revision 75356a8143426a1301bc66c4fb920dcb1bd5e934 authored by Dan Carpenter on 23 January 2013, 20:38:34 UTC, committed by David S. Miller on 28 January 2013, 00:31:03 UTC
We did this for IPv4 in b49d3c1e1c "net: ipmr: limit MRT_TABLE
identifiers" but we need to do it for IPv6 as well.  On IPv6 the name
is "pim6reg" instead of "pimreg" so there is one less digit allowed.

The strcpy() is in ip6mr_reg_vif().

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1 parent ce11ff5
Raw File
v4l2-mem2mem.h
/*
 * Memory-to-memory device framework for Video for Linux 2.
 *
 * Helper functions for devices that use memory buffers for both source
 * and destination.
 *
 * Copyright (c) 2009 Samsung Electronics Co., Ltd.
 * Pawel Osciak, <pawel@osciak.com>
 * Marek Szyprowski, <m.szyprowski@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version
 */

#ifndef _MEDIA_V4L2_MEM2MEM_H
#define _MEDIA_V4L2_MEM2MEM_H

#include <media/videobuf2-core.h>

/**
 * struct v4l2_m2m_ops - mem-to-mem device driver callbacks
 * @device_run:	required. Begin the actual job (transaction) inside this
 *		callback.
 *		The job does NOT have to end before this callback returns
 *		(and it will be the usual case). When the job finishes,
 *		v4l2_m2m_job_finish() has to be called.
 * @job_ready:	optional. Should return 0 if the driver does not have a job
 *		fully prepared to run yet (i.e. it will not be able to finish a
 *		transaction without sleeping). If not provided, it will be
 *		assumed that one source and one destination buffer are all
 *		that is required for the driver to perform one full transaction.
 *		This method may not sleep.
 * @job_abort:	required. Informs the driver that it has to abort the currently
 *		running transaction as soon as possible (i.e. as soon as it can
 *		stop the device safely; e.g. in the next interrupt handler),
 *		even if the transaction would not have been finished by then.
 *		After the driver performs the necessary steps, it has to call
 *		v4l2_m2m_job_finish() (as if the transaction ended normally).
 *		This function does not have to (and will usually not) wait
 *		until the device enters a state when it can be stopped.
 */
struct v4l2_m2m_ops {
	void (*device_run)(void *priv);
	int (*job_ready)(void *priv);
	void (*job_abort)(void *priv);
	void (*lock)(void *priv);
	void (*unlock)(void *priv);
};

struct v4l2_m2m_dev;

struct v4l2_m2m_queue_ctx {
/* private: internal use only */
	struct vb2_queue	q;

	/* Queue for buffers ready to be processed as soon as this
	 * instance receives access to the device */
	struct list_head	rdy_queue;
	spinlock_t		rdy_spinlock;
	u8			num_rdy;
};

struct v4l2_m2m_ctx {
/* private: internal use only */
	struct v4l2_m2m_dev		*m2m_dev;

	/* Capture (output to memory) queue context */
	struct v4l2_m2m_queue_ctx	cap_q_ctx;

	/* Output (input from memory) queue context */
	struct v4l2_m2m_queue_ctx	out_q_ctx;

	/* For device job queue */
	struct list_head		queue;
	unsigned long			job_flags;
	wait_queue_head_t		finished;

	/* Instance private data */
	void				*priv;
};

struct v4l2_m2m_buffer {
	struct vb2_buffer	vb;
	struct list_head	list;
};

void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev);

struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
				       enum v4l2_buf_type type);

void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
			 struct v4l2_m2m_ctx *m2m_ctx);

static inline void
v4l2_m2m_buf_done(struct vb2_buffer *buf, enum vb2_buffer_state state)
{
	vb2_buffer_done(buf, state);
}

int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		     struct v4l2_requestbuffers *reqbufs);

int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		      struct v4l2_buffer *buf);

int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		  struct v4l2_buffer *buf);
int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		   struct v4l2_buffer *buf);

int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		   struct v4l2_exportbuffer *eb);

int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		      enum v4l2_buf_type type);
int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		       enum v4l2_buf_type type);

unsigned int v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
			   struct poll_table_struct *wait);

int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
		  struct vm_area_struct *vma);

struct v4l2_m2m_dev *v4l2_m2m_init(struct v4l2_m2m_ops *m2m_ops);
void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev);

struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
		void *drv_priv,
		int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq));

void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx);

void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_buffer *vb);

/**
 * v4l2_m2m_num_src_bufs_ready() - return the number of source buffers ready for
 * use
 */
static inline
unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
{
	return m2m_ctx->out_q_ctx.num_rdy;
}

/**
 * v4l2_m2m_num_src_bufs_ready() - return the number of destination buffers
 * ready for use
 */
static inline
unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
{
	return m2m_ctx->cap_q_ctx.num_rdy;
}

void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx);

/**
 * v4l2_m2m_next_src_buf() - return next source buffer from the list of ready
 * buffers
 */
static inline void *v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
	return v4l2_m2m_next_buf(&m2m_ctx->out_q_ctx);
}

/**
 * v4l2_m2m_next_dst_buf() - return next destination buffer from the list of
 * ready buffers
 */
static inline void *v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
	return v4l2_m2m_next_buf(&m2m_ctx->cap_q_ctx);
}

/**
 * v4l2_m2m_get_src_vq() - return vb2_queue for source buffers
 */
static inline
struct vb2_queue *v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx *m2m_ctx)
{
	return &m2m_ctx->out_q_ctx.q;
}

/**
 * v4l2_m2m_get_dst_vq() - return vb2_queue for destination buffers
 */
static inline
struct vb2_queue *v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx *m2m_ctx)
{
	return &m2m_ctx->cap_q_ctx.q;
}

void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx);

/**
 * v4l2_m2m_src_buf_remove() - take off a source buffer from the list of ready
 * buffers and return it
 */
static inline void *v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
{
	return v4l2_m2m_buf_remove(&m2m_ctx->out_q_ctx);
}

/**
 * v4l2_m2m_dst_buf_remove() - take off a destination buffer from the list of
 * ready buffers and return it
 */
static inline void *v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
{
	return v4l2_m2m_buf_remove(&m2m_ctx->cap_q_ctx);
}

#endif /* _MEDIA_V4L2_MEM2MEM_H */

back to top