Revision 766b6821a98ea206fe461d23237bc4a4589c24af authored by Alireza Mahani on 02 November 2022, 10:02:22 UTC, committed by cran-robot on 02 November 2022, 10:02:22 UTC
1 parent f1cf3c9
ess.R
#############################################################################
# Computes the effective sample size using the algorithm in Section 2.3 of
# the paper (http://arxiv.org/pdf/1011.0175v1.pdf) by Madeline Thompson.
# The algorithm is taken from earlier work on 'Initial Sequence Estimators'
# by multiple authors.
#
# Args:
# x - matrix object with each sample (possibly multivariate) as a row
# Returns:
# effective sample sizes for the time series in each col of 'x'
#############################################################################
ess <- function(x, method = c("coda", "ise")) {
method <- match.arg(method) # TODO: added per JSS suggestion; must be tested
# recursive call to each column of x
if (NCOL(x) > 1) {
return (apply(x, 2, ess, method))
}
# require minimum length of 3 for array
M <- length(x)
if (M < 3) return (NA)
# return zero for constant arrays
if (sd(x) == 0.0) return (0.0)
# coda method
if (method == "coda") return (effectiveSize(x))
# ise method
autocf <- acf(x, plot = FALSE, lag.max = length(x))$acf
sum <- 0
prev <- 0
for (s in 1:(M-2)) {
rho <- autocf[s+1]
if ((prev + rho) <= 0) {
break
} else {
sum <- sum + rho
prev <- rho
}
}
return (M/(1+2*sum))
}
Computing file changes ...