Revision 78c906e430b13d30a8cfbdef4ccbbe1686841a9e authored by Vlad Buslov on 31 August 2020, 13:17:29 UTC, committed by Saeed Mahameed on 05 November 2020, 20:17:05 UTC
In functions mlx5e_route_lookup_ipv{4|6}() route_dev can be arbitrary net
device and not necessary mlx5 eswitch port representor. As such, in order
to ensure that route_dev is not destroyed concurrent the code needs either
explicitly take reference to the device before releasing reference to
rtable instance or ensure that caller holds rtnl lock. First approach is
chosen as a fix since rtnl lock dependency was intentionally removed from
mlx5 TC layer.

To prevent unprotected usage of route_dev in encap code take a reference to
the device before releasing rt. Don't save direct pointer to the device in
mlx5_encap_entry structure and use ifindex instead. Modify users of
route_dev pointer to properly obtain the net device instance from its
ifindex.

Fixes: 61086f391044 ("net/mlx5e: Protect encap hash table with mutex")
Fixes: 6707f74be862 ("net/mlx5e: Update hw flows when encap source mac changed")
Signed-off-by: Vlad Buslov <vladbu@nvidia.com>
Reviewed-by: Roi Dayan <roid@nvidia.com>
Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
1 parent e68e28b
Raw File
datagram.c
// SPDX-License-Identifier: GPL-2.0
/*
 *	SUCS NET3:
 *
 *	Generic datagram handling routines. These are generic for all
 *	protocols. Possibly a generic IP version on top of these would
 *	make sense. Not tonight however 8-).
 *	This is used because UDP, RAW, PACKET, DDP, IPX, AX.25 and
 *	NetROM layer all have identical poll code and mostly
 *	identical recvmsg() code. So we share it here. The poll was
 *	shared before but buried in udp.c so I moved it.
 *
 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>. (datagram_poll() from old
 *						     udp.c code)
 *
 *	Fixes:
 *		Alan Cox	:	NULL return from skb_peek_copy()
 *					understood
 *		Alan Cox	:	Rewrote skb_read_datagram to avoid the
 *					skb_peek_copy stuff.
 *		Alan Cox	:	Added support for SOCK_SEQPACKET.
 *					IPX can no longer use the SO_TYPE hack
 *					but AX.25 now works right, and SPX is
 *					feasible.
 *		Alan Cox	:	Fixed write poll of non IP protocol
 *					crash.
 *		Florian  La Roche:	Changed for my new skbuff handling.
 *		Darryl Miles	:	Fixed non-blocking SOCK_SEQPACKET.
 *		Linus Torvalds	:	BSD semantic fixes.
 *		Alan Cox	:	Datagram iovec handling
 *		Darryl Miles	:	Fixed non-blocking SOCK_STREAM.
 *		Alan Cox	:	POSIXisms
 *		Pete Wyckoff    :       Unconnected accept() fix.
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/uaccess.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/poll.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/indirect_call_wrapper.h>

#include <net/protocol.h>
#include <linux/skbuff.h>

#include <net/checksum.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <trace/events/skb.h>
#include <net/busy_poll.h>

#include "datagram.h"

/*
 *	Is a socket 'connection oriented' ?
 */
static inline int connection_based(struct sock *sk)
{
	return sk->sk_type == SOCK_SEQPACKET || sk->sk_type == SOCK_STREAM;
}

static int receiver_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync,
				  void *key)
{
	/*
	 * Avoid a wakeup if event not interesting for us
	 */
	if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR)))
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}
/*
 * Wait for the last received packet to be different from skb
 */
int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
				int *err, long *timeo_p,
				const struct sk_buff *skb)
{
	int error;
	DEFINE_WAIT_FUNC(wait, receiver_wake_function);

	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);

	/* Socket errors? */
	error = sock_error(sk);
	if (error)
		goto out_err;

	if (READ_ONCE(queue->prev) != skb)
		goto out;

	/* Socket shut down? */
	if (sk->sk_shutdown & RCV_SHUTDOWN)
		goto out_noerr;

	/* Sequenced packets can come disconnected.
	 * If so we report the problem
	 */
	error = -ENOTCONN;
	if (connection_based(sk) &&
	    !(sk->sk_state == TCP_ESTABLISHED || sk->sk_state == TCP_LISTEN))
		goto out_err;

	/* handle signals */
	if (signal_pending(current))
		goto interrupted;

	error = 0;
	*timeo_p = schedule_timeout(*timeo_p);
out:
	finish_wait(sk_sleep(sk), &wait);
	return error;
interrupted:
	error = sock_intr_errno(*timeo_p);
out_err:
	*err = error;
	goto out;
out_noerr:
	*err = 0;
	error = 1;
	goto out;
}
EXPORT_SYMBOL(__skb_wait_for_more_packets);

static struct sk_buff *skb_set_peeked(struct sk_buff *skb)
{
	struct sk_buff *nskb;

	if (skb->peeked)
		return skb;

	/* We have to unshare an skb before modifying it. */
	if (!skb_shared(skb))
		goto done;

	nskb = skb_clone(skb, GFP_ATOMIC);
	if (!nskb)
		return ERR_PTR(-ENOMEM);

	skb->prev->next = nskb;
	skb->next->prev = nskb;
	nskb->prev = skb->prev;
	nskb->next = skb->next;

	consume_skb(skb);
	skb = nskb;

done:
	skb->peeked = 1;

	return skb;
}

struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
					  struct sk_buff_head *queue,
					  unsigned int flags,
					  int *off, int *err,
					  struct sk_buff **last)
{
	bool peek_at_off = false;
	struct sk_buff *skb;
	int _off = 0;

	if (unlikely(flags & MSG_PEEK && *off >= 0)) {
		peek_at_off = true;
		_off = *off;
	}

	*last = queue->prev;
	skb_queue_walk(queue, skb) {
		if (flags & MSG_PEEK) {
			if (peek_at_off && _off >= skb->len &&
			    (_off || skb->peeked)) {
				_off -= skb->len;
				continue;
			}
			if (!skb->len) {
				skb = skb_set_peeked(skb);
				if (IS_ERR(skb)) {
					*err = PTR_ERR(skb);
					return NULL;
				}
			}
			refcount_inc(&skb->users);
		} else {
			__skb_unlink(skb, queue);
		}
		*off = _off;
		return skb;
	}
	return NULL;
}

/**
 *	__skb_try_recv_datagram - Receive a datagram skbuff
 *	@sk: socket
 *	@queue: socket queue from which to receive
 *	@flags: MSG\_ flags
 *	@off: an offset in bytes to peek skb from. Returns an offset
 *	      within an skb where data actually starts
 *	@err: error code returned
 *	@last: set to last peeked message to inform the wait function
 *	       what to look for when peeking
 *
 *	Get a datagram skbuff, understands the peeking, nonblocking wakeups
 *	and possible races. This replaces identical code in packet, raw and
 *	udp, as well as the IPX AX.25 and Appletalk. It also finally fixes
 *	the long standing peek and read race for datagram sockets. If you
 *	alter this routine remember it must be re-entrant.
 *
 *	This function will lock the socket if a skb is returned, so
 *	the caller needs to unlock the socket in that case (usually by
 *	calling skb_free_datagram). Returns NULL with @err set to
 *	-EAGAIN if no data was available or to some other value if an
 *	error was detected.
 *
 *	* It does not lock socket since today. This function is
 *	* free of race conditions. This measure should/can improve
 *	* significantly datagram socket latencies at high loads,
 *	* when data copying to user space takes lots of time.
 *	* (BTW I've just killed the last cli() in IP/IPv6/core/netlink/packet
 *	*  8) Great win.)
 *	*			                    --ANK (980729)
 *
 *	The order of the tests when we find no data waiting are specified
 *	quite explicitly by POSIX 1003.1g, don't change them without having
 *	the standard around please.
 */
struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
					struct sk_buff_head *queue,
					unsigned int flags, int *off, int *err,
					struct sk_buff **last)
{
	struct sk_buff *skb;
	unsigned long cpu_flags;
	/*
	 * Caller is allowed not to check sk->sk_err before skb_recv_datagram()
	 */
	int error = sock_error(sk);

	if (error)
		goto no_packet;

	do {
		/* Again only user level code calls this function, so nothing
		 * interrupt level will suddenly eat the receive_queue.
		 *
		 * Look at current nfs client by the way...
		 * However, this function was correct in any case. 8)
		 */
		spin_lock_irqsave(&queue->lock, cpu_flags);
		skb = __skb_try_recv_from_queue(sk, queue, flags, off, &error,
						last);
		spin_unlock_irqrestore(&queue->lock, cpu_flags);
		if (error)
			goto no_packet;
		if (skb)
			return skb;

		if (!sk_can_busy_loop(sk))
			break;

		sk_busy_loop(sk, flags & MSG_DONTWAIT);
	} while (READ_ONCE(queue->prev) != *last);

	error = -EAGAIN;

no_packet:
	*err = error;
	return NULL;
}
EXPORT_SYMBOL(__skb_try_recv_datagram);

struct sk_buff *__skb_recv_datagram(struct sock *sk,
				    struct sk_buff_head *sk_queue,
				    unsigned int flags, int *off, int *err)
{
	struct sk_buff *skb, *last;
	long timeo;

	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);

	do {
		skb = __skb_try_recv_datagram(sk, sk_queue, flags, off, err,
					      &last);
		if (skb)
			return skb;

		if (*err != -EAGAIN)
			break;
	} while (timeo &&
		 !__skb_wait_for_more_packets(sk, sk_queue, err,
					      &timeo, last));

	return NULL;
}
EXPORT_SYMBOL(__skb_recv_datagram);

struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags,
				  int noblock, int *err)
{
	int off = 0;

	return __skb_recv_datagram(sk, &sk->sk_receive_queue,
				   flags | (noblock ? MSG_DONTWAIT : 0),
				   &off, err);
}
EXPORT_SYMBOL(skb_recv_datagram);

void skb_free_datagram(struct sock *sk, struct sk_buff *skb)
{
	consume_skb(skb);
	sk_mem_reclaim_partial(sk);
}
EXPORT_SYMBOL(skb_free_datagram);

void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len)
{
	bool slow;

	if (!skb_unref(skb)) {
		sk_peek_offset_bwd(sk, len);
		return;
	}

	slow = lock_sock_fast(sk);
	sk_peek_offset_bwd(sk, len);
	skb_orphan(skb);
	sk_mem_reclaim_partial(sk);
	unlock_sock_fast(sk, slow);

	/* skb is now orphaned, can be freed outside of locked section */
	__kfree_skb(skb);
}
EXPORT_SYMBOL(__skb_free_datagram_locked);

int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
			struct sk_buff *skb, unsigned int flags,
			void (*destructor)(struct sock *sk,
					   struct sk_buff *skb))
{
	int err = 0;

	if (flags & MSG_PEEK) {
		err = -ENOENT;
		spin_lock_bh(&sk_queue->lock);
		if (skb->next) {
			__skb_unlink(skb, sk_queue);
			refcount_dec(&skb->users);
			if (destructor)
				destructor(sk, skb);
			err = 0;
		}
		spin_unlock_bh(&sk_queue->lock);
	}

	atomic_inc(&sk->sk_drops);
	return err;
}
EXPORT_SYMBOL(__sk_queue_drop_skb);

/**
 *	skb_kill_datagram - Free a datagram skbuff forcibly
 *	@sk: socket
 *	@skb: datagram skbuff
 *	@flags: MSG\_ flags
 *
 *	This function frees a datagram skbuff that was received by
 *	skb_recv_datagram.  The flags argument must match the one
 *	used for skb_recv_datagram.
 *
 *	If the MSG_PEEK flag is set, and the packet is still on the
 *	receive queue of the socket, it will be taken off the queue
 *	before it is freed.
 *
 *	This function currently only disables BH when acquiring the
 *	sk_receive_queue lock.  Therefore it must not be used in a
 *	context where that lock is acquired in an IRQ context.
 *
 *	It returns 0 if the packet was removed by us.
 */

int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags)
{
	int err = __sk_queue_drop_skb(sk, &sk->sk_receive_queue, skb, flags,
				      NULL);

	kfree_skb(skb);
	sk_mem_reclaim_partial(sk);
	return err;
}
EXPORT_SYMBOL(skb_kill_datagram);

INDIRECT_CALLABLE_DECLARE(static size_t simple_copy_to_iter(const void *addr,
						size_t bytes,
						void *data __always_unused,
						struct iov_iter *i));

static int __skb_datagram_iter(const struct sk_buff *skb, int offset,
			       struct iov_iter *to, int len, bool fault_short,
			       size_t (*cb)(const void *, size_t, void *,
					    struct iov_iter *), void *data)
{
	int start = skb_headlen(skb);
	int i, copy = start - offset, start_off = offset, n;
	struct sk_buff *frag_iter;

	/* Copy header. */
	if (copy > 0) {
		if (copy > len)
			copy = len;
		n = INDIRECT_CALL_1(cb, simple_copy_to_iter,
				    skb->data + offset, copy, data, to);
		offset += n;
		if (n != copy)
			goto short_copy;
		if ((len -= copy) == 0)
			return 0;
	}

	/* Copy paged appendix. Hmm... why does this look so complicated? */
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		int end;
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		WARN_ON(start > offset + len);

		end = start + skb_frag_size(frag);
		if ((copy = end - offset) > 0) {
			struct page *page = skb_frag_page(frag);
			u8 *vaddr = kmap(page);

			if (copy > len)
				copy = len;
			n = INDIRECT_CALL_1(cb, simple_copy_to_iter,
					vaddr + skb_frag_off(frag) + offset - start,
					copy, data, to);
			kunmap(page);
			offset += n;
			if (n != copy)
				goto short_copy;
			if (!(len -= copy))
				return 0;
		}
		start = end;
	}

	skb_walk_frags(skb, frag_iter) {
		int end;

		WARN_ON(start > offset + len);

		end = start + frag_iter->len;
		if ((copy = end - offset) > 0) {
			if (copy > len)
				copy = len;
			if (__skb_datagram_iter(frag_iter, offset - start,
						to, copy, fault_short, cb, data))
				goto fault;
			if ((len -= copy) == 0)
				return 0;
			offset += copy;
		}
		start = end;
	}
	if (!len)
		return 0;

	/* This is not really a user copy fault, but rather someone
	 * gave us a bogus length on the skb.  We should probably
	 * print a warning here as it may indicate a kernel bug.
	 */

fault:
	iov_iter_revert(to, offset - start_off);
	return -EFAULT;

short_copy:
	if (fault_short || iov_iter_count(to))
		goto fault;

	return 0;
}

/**
 *	skb_copy_and_hash_datagram_iter - Copy datagram to an iovec iterator
 *          and update a hash.
 *	@skb: buffer to copy
 *	@offset: offset in the buffer to start copying from
 *	@to: iovec iterator to copy to
 *	@len: amount of data to copy from buffer to iovec
 *      @hash: hash request to update
 */
int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
			   struct iov_iter *to, int len,
			   struct ahash_request *hash)
{
	return __skb_datagram_iter(skb, offset, to, len, true,
			hash_and_copy_to_iter, hash);
}
EXPORT_SYMBOL(skb_copy_and_hash_datagram_iter);

static size_t simple_copy_to_iter(const void *addr, size_t bytes,
		void *data __always_unused, struct iov_iter *i)
{
	return copy_to_iter(addr, bytes, i);
}

/**
 *	skb_copy_datagram_iter - Copy a datagram to an iovec iterator.
 *	@skb: buffer to copy
 *	@offset: offset in the buffer to start copying from
 *	@to: iovec iterator to copy to
 *	@len: amount of data to copy from buffer to iovec
 */
int skb_copy_datagram_iter(const struct sk_buff *skb, int offset,
			   struct iov_iter *to, int len)
{
	trace_skb_copy_datagram_iovec(skb, len);
	return __skb_datagram_iter(skb, offset, to, len, false,
			simple_copy_to_iter, NULL);
}
EXPORT_SYMBOL(skb_copy_datagram_iter);

/**
 *	skb_copy_datagram_from_iter - Copy a datagram from an iov_iter.
 *	@skb: buffer to copy
 *	@offset: offset in the buffer to start copying to
 *	@from: the copy source
 *	@len: amount of data to copy to buffer from iovec
 *
 *	Returns 0 or -EFAULT.
 */
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from,
				 int len)
{
	int start = skb_headlen(skb);
	int i, copy = start - offset;
	struct sk_buff *frag_iter;

	/* Copy header. */
	if (copy > 0) {
		if (copy > len)
			copy = len;
		if (copy_from_iter(skb->data + offset, copy, from) != copy)
			goto fault;
		if ((len -= copy) == 0)
			return 0;
		offset += copy;
	}

	/* Copy paged appendix. Hmm... why does this look so complicated? */
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		int end;
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		WARN_ON(start > offset + len);

		end = start + skb_frag_size(frag);
		if ((copy = end - offset) > 0) {
			size_t copied;

			if (copy > len)
				copy = len;
			copied = copy_page_from_iter(skb_frag_page(frag),
					  skb_frag_off(frag) + offset - start,
					  copy, from);
			if (copied != copy)
				goto fault;

			if (!(len -= copy))
				return 0;
			offset += copy;
		}
		start = end;
	}

	skb_walk_frags(skb, frag_iter) {
		int end;

		WARN_ON(start > offset + len);

		end = start + frag_iter->len;
		if ((copy = end - offset) > 0) {
			if (copy > len)
				copy = len;
			if (skb_copy_datagram_from_iter(frag_iter,
							offset - start,
							from, copy))
				goto fault;
			if ((len -= copy) == 0)
				return 0;
			offset += copy;
		}
		start = end;
	}
	if (!len)
		return 0;

fault:
	return -EFAULT;
}
EXPORT_SYMBOL(skb_copy_datagram_from_iter);

int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
			    struct iov_iter *from, size_t length)
{
	int frag = skb_shinfo(skb)->nr_frags;

	while (length && iov_iter_count(from)) {
		struct page *pages[MAX_SKB_FRAGS];
		struct page *last_head = NULL;
		size_t start;
		ssize_t copied;
		unsigned long truesize;
		int refs, n = 0;

		if (frag == MAX_SKB_FRAGS)
			return -EMSGSIZE;

		copied = iov_iter_get_pages(from, pages, length,
					    MAX_SKB_FRAGS - frag, &start);
		if (copied < 0)
			return -EFAULT;

		iov_iter_advance(from, copied);
		length -= copied;

		truesize = PAGE_ALIGN(copied + start);
		skb->data_len += copied;
		skb->len += copied;
		skb->truesize += truesize;
		if (sk && sk->sk_type == SOCK_STREAM) {
			sk_wmem_queued_add(sk, truesize);
			sk_mem_charge(sk, truesize);
		} else {
			refcount_add(truesize, &skb->sk->sk_wmem_alloc);
		}
		for (refs = 0; copied != 0; start = 0) {
			int size = min_t(int, copied, PAGE_SIZE - start);
			struct page *head = compound_head(pages[n]);

			start += (pages[n] - head) << PAGE_SHIFT;
			copied -= size;
			n++;
			if (frag) {
				skb_frag_t *last = &skb_shinfo(skb)->frags[frag - 1];

				if (head == skb_frag_page(last) &&
				    start == skb_frag_off(last) + skb_frag_size(last)) {
					skb_frag_size_add(last, size);
					/* We combined this page, we need to release
					 * a reference. Since compound pages refcount
					 * is shared among many pages, batch the refcount
					 * adjustments to limit false sharing.
					 */
					last_head = head;
					refs++;
					continue;
				}
			}
			if (refs) {
				page_ref_sub(last_head, refs);
				refs = 0;
			}
			skb_fill_page_desc(skb, frag++, head, start, size);
		}
		if (refs)
			page_ref_sub(last_head, refs);
	}
	return 0;
}
EXPORT_SYMBOL(__zerocopy_sg_from_iter);

/**
 *	zerocopy_sg_from_iter - Build a zerocopy datagram from an iov_iter
 *	@skb: buffer to copy
 *	@from: the source to copy from
 *
 *	The function will first copy up to headlen, and then pin the userspace
 *	pages and build frags through them.
 *
 *	Returns 0, -EFAULT or -EMSGSIZE.
 */
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *from)
{
	int copy = min_t(int, skb_headlen(skb), iov_iter_count(from));

	/* copy up to skb headlen */
	if (skb_copy_datagram_from_iter(skb, 0, from, copy))
		return -EFAULT;

	return __zerocopy_sg_from_iter(NULL, skb, from, ~0U);
}
EXPORT_SYMBOL(zerocopy_sg_from_iter);

/**
 *	skb_copy_and_csum_datagram_iter - Copy datagram to an iovec iterator
 *          and update a checksum.
 *	@skb: buffer to copy
 *	@offset: offset in the buffer to start copying from
 *	@to: iovec iterator to copy to
 *	@len: amount of data to copy from buffer to iovec
 *      @csump: checksum pointer
 */
static int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset,
				      struct iov_iter *to, int len,
				      __wsum *csump)
{
	return __skb_datagram_iter(skb, offset, to, len, true,
			csum_and_copy_to_iter, csump);
}

/**
 *	skb_copy_and_csum_datagram_msg - Copy and checksum skb to user iovec.
 *	@skb: skbuff
 *	@hlen: hardware length
 *	@msg: destination
 *
 *	Caller _must_ check that skb will fit to this iovec.
 *
 *	Returns: 0       - success.
 *		 -EINVAL - checksum failure.
 *		 -EFAULT - fault during copy.
 */
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb,
				   int hlen, struct msghdr *msg)
{
	__wsum csum;
	int chunk = skb->len - hlen;

	if (!chunk)
		return 0;

	if (msg_data_left(msg) < chunk) {
		if (__skb_checksum_complete(skb))
			return -EINVAL;
		if (skb_copy_datagram_msg(skb, hlen, msg, chunk))
			goto fault;
	} else {
		csum = csum_partial(skb->data, hlen, skb->csum);
		if (skb_copy_and_csum_datagram(skb, hlen, &msg->msg_iter,
					       chunk, &csum))
			goto fault;

		if (csum_fold(csum)) {
			iov_iter_revert(&msg->msg_iter, chunk);
			return -EINVAL;
		}

		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
		    !skb->csum_complete_sw)
			netdev_rx_csum_fault(NULL, skb);
	}
	return 0;
fault:
	return -EFAULT;
}
EXPORT_SYMBOL(skb_copy_and_csum_datagram_msg);

/**
 * 	datagram_poll - generic datagram poll
 *	@file: file struct
 *	@sock: socket
 *	@wait: poll table
 *
 *	Datagram poll: Again totally generic. This also handles
 *	sequenced packet sockets providing the socket receive queue
 *	is only ever holding data ready to receive.
 *
 *	Note: when you *don't* use this routine for this protocol,
 *	and you use a different write policy from sock_writeable()
 *	then please supply your own write_space callback.
 */
__poll_t datagram_poll(struct file *file, struct socket *sock,
			   poll_table *wait)
{
	struct sock *sk = sock->sk;
	__poll_t mask;

	sock_poll_wait(file, sock, wait);
	mask = 0;

	/* exceptional events? */
	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
		mask |= EPOLLERR |
			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);

	if (sk->sk_shutdown & RCV_SHUTDOWN)
		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
	if (sk->sk_shutdown == SHUTDOWN_MASK)
		mask |= EPOLLHUP;

	/* readable? */
	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
		mask |= EPOLLIN | EPOLLRDNORM;

	/* Connection-based need to check for termination and startup */
	if (connection_based(sk)) {
		if (sk->sk_state == TCP_CLOSE)
			mask |= EPOLLHUP;
		/* connection hasn't started yet? */
		if (sk->sk_state == TCP_SYN_SENT)
			return mask;
	}

	/* writable? */
	if (sock_writeable(sk))
		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
	else
		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);

	return mask;
}
EXPORT_SYMBOL(datagram_poll);
back to top