Revision 7906d00cd1f687268f0a3599442d113767795ae6 authored by Andrea Arcangeli on 28 July 2008, 22:46:26 UTC, committed by Linus Torvalds on 28 July 2008, 23:30:21 UTC
mm_take_all_locks holds off reclaim from an entire mm_struct.  This allows
mmu notifiers to register into the mm at any time with the guarantee that
no mmu operation is in progress on the mm.

This operation locks against the VM for all pte/vma/mm related operations
that could ever happen on a certain mm.  This includes vmtruncate,
try_to_unmap, and all page faults.

The caller must take the mmap_sem in write mode before calling
mm_take_all_locks().  The caller isn't allowed to release the mmap_sem
until mm_drop_all_locks() returns.

mmap_sem in write mode is required in order to block all operations that
could modify pagetables and free pages without need of altering the vma
layout (for example populate_range() with nonlinear vmas).  It's also
needed in write mode to avoid new anon_vmas to be associated with existing
vmas.

A single task can't take more than one mm_take_all_locks() in a row or it
would deadlock.

mm_take_all_locks() and mm_drop_all_locks are expensive operations that
may have to take thousand of locks.

mm_take_all_locks() can fail if it's interrupted by signals.

When mmu_notifier_register returns, we must be sure that the driver is
notified if some task is in the middle of a vmtruncate for the 'mm' where
the mmu notifier was registered (mmu_notifier_invalidate_range_start/end
is run around the vmtruncation but mmu_notifier_register can run after
mmu_notifier_invalidate_range_start and before
mmu_notifier_invalidate_range_end).  Same problem for rmap paths.  And
we've to remove page pinning to avoid replicating the tlb_gather logic
inside KVM (and GRU doesn't work well with page pinning regardless of
needing tlb_gather), so without mm_take_all_locks when vmtruncate frees
the page, kvm would have no way to notice that it mapped into sptes a page
that is going into the freelist without a chance of any further
mmu_notifier notification.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 6beeac7
Raw File
mbcache.c
/*
 * linux/fs/mbcache.c
 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
 */

/*
 * Filesystem Meta Information Block Cache (mbcache)
 *
 * The mbcache caches blocks of block devices that need to be located
 * by their device/block number, as well as by other criteria (such
 * as the block's contents).
 *
 * There can only be one cache entry in a cache per device and block number.
 * Additional indexes need not be unique in this sense. The number of
 * additional indexes (=other criteria) can be hardwired at compile time
 * or specified at cache create time.
 *
 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
 * in the cache. A valid entry is in the main hash tables of the cache,
 * and may also be in the lru list. An invalid entry is not in any hashes
 * or lists.
 *
 * A valid cache entry is only in the lru list if no handles refer to it.
 * Invalid cache entries will be freed when the last handle to the cache
 * entry is released. Entries that cannot be freed immediately are put
 * back on the lru list.
 */

#include <linux/kernel.h>
#include <linux/module.h>

#include <linux/hash.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mbcache.h>


#ifdef MB_CACHE_DEBUG
# define mb_debug(f...) do { \
		printk(KERN_DEBUG f); \
		printk("\n"); \
	} while (0)
#define mb_assert(c) do { if (!(c)) \
		printk(KERN_ERR "assertion " #c " failed\n"); \
	} while(0)
#else
# define mb_debug(f...) do { } while(0)
# define mb_assert(c) do { } while(0)
#endif
#define mb_error(f...) do { \
		printk(KERN_ERR f); \
		printk("\n"); \
	} while(0)

#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)

static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
		
MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(mb_cache_create);
EXPORT_SYMBOL(mb_cache_shrink);
EXPORT_SYMBOL(mb_cache_destroy);
EXPORT_SYMBOL(mb_cache_entry_alloc);
EXPORT_SYMBOL(mb_cache_entry_insert);
EXPORT_SYMBOL(mb_cache_entry_release);
EXPORT_SYMBOL(mb_cache_entry_free);
EXPORT_SYMBOL(mb_cache_entry_get);
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
EXPORT_SYMBOL(mb_cache_entry_find_first);
EXPORT_SYMBOL(mb_cache_entry_find_next);
#endif

struct mb_cache {
	struct list_head		c_cache_list;
	const char			*c_name;
	struct mb_cache_op		c_op;
	atomic_t			c_entry_count;
	int				c_bucket_bits;
#ifndef MB_CACHE_INDEXES_COUNT
	int				c_indexes_count;
#endif
	struct kmem_cache			*c_entry_cache;
	struct list_head		*c_block_hash;
	struct list_head		*c_indexes_hash[0];
};


/*
 * Global data: list of all mbcache's, lru list, and a spinlock for
 * accessing cache data structures on SMP machines. The lru list is
 * global across all mbcaches.
 */

static LIST_HEAD(mb_cache_list);
static LIST_HEAD(mb_cache_lru_list);
static DEFINE_SPINLOCK(mb_cache_spinlock);

static inline int
mb_cache_indexes(struct mb_cache *cache)
{
#ifdef MB_CACHE_INDEXES_COUNT
	return MB_CACHE_INDEXES_COUNT;
#else
	return cache->c_indexes_count;
#endif
}

/*
 * What the mbcache registers as to get shrunk dynamically.
 */

static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);

static struct shrinker mb_cache_shrinker = {
	.shrink = mb_cache_shrink_fn,
	.seeks = DEFAULT_SEEKS,
};

static inline int
__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
{
	return !list_empty(&ce->e_block_list);
}


static void
__mb_cache_entry_unhash(struct mb_cache_entry *ce)
{
	int n;

	if (__mb_cache_entry_is_hashed(ce)) {
		list_del_init(&ce->e_block_list);
		for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
			list_del(&ce->e_indexes[n].o_list);
	}
}


static void
__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
{
	struct mb_cache *cache = ce->e_cache;

	mb_assert(!(ce->e_used || ce->e_queued));
	if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
		/* free failed -- put back on the lru list
		   for freeing later. */
		spin_lock(&mb_cache_spinlock);
		list_add(&ce->e_lru_list, &mb_cache_lru_list);
		spin_unlock(&mb_cache_spinlock);
	} else {
		kmem_cache_free(cache->c_entry_cache, ce);
		atomic_dec(&cache->c_entry_count);
	}
}


static void
__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
	__releases(mb_cache_spinlock)
{
	/* Wake up all processes queuing for this cache entry. */
	if (ce->e_queued)
		wake_up_all(&mb_cache_queue);
	if (ce->e_used >= MB_CACHE_WRITER)
		ce->e_used -= MB_CACHE_WRITER;
	ce->e_used--;
	if (!(ce->e_used || ce->e_queued)) {
		if (!__mb_cache_entry_is_hashed(ce))
			goto forget;
		mb_assert(list_empty(&ce->e_lru_list));
		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
	}
	spin_unlock(&mb_cache_spinlock);
	return;
forget:
	spin_unlock(&mb_cache_spinlock);
	__mb_cache_entry_forget(ce, GFP_KERNEL);
}


/*
 * mb_cache_shrink_fn()  memory pressure callback
 *
 * This function is called by the kernel memory management when memory
 * gets low.
 *
 * @nr_to_scan: Number of objects to scan
 * @gfp_mask: (ignored)
 *
 * Returns the number of objects which are present in the cache.
 */
static int
mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
{
	LIST_HEAD(free_list);
	struct list_head *l, *ltmp;
	int count = 0;

	spin_lock(&mb_cache_spinlock);
	list_for_each(l, &mb_cache_list) {
		struct mb_cache *cache =
			list_entry(l, struct mb_cache, c_cache_list);
		mb_debug("cache %s (%d)", cache->c_name,
			  atomic_read(&cache->c_entry_count));
		count += atomic_read(&cache->c_entry_count);
	}
	mb_debug("trying to free %d entries", nr_to_scan);
	if (nr_to_scan == 0) {
		spin_unlock(&mb_cache_spinlock);
		goto out;
	}
	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
		struct mb_cache_entry *ce =
			list_entry(mb_cache_lru_list.next,
				   struct mb_cache_entry, e_lru_list);
		list_move_tail(&ce->e_lru_list, &free_list);
		__mb_cache_entry_unhash(ce);
	}
	spin_unlock(&mb_cache_spinlock);
	list_for_each_safe(l, ltmp, &free_list) {
		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
						   e_lru_list), gfp_mask);
	}
out:
	return (count / 100) * sysctl_vfs_cache_pressure;
}


/*
 * mb_cache_create()  create a new cache
 *
 * All entries in one cache are equal size. Cache entries may be from
 * multiple devices. If this is the first mbcache created, registers
 * the cache with kernel memory management. Returns NULL if no more
 * memory was available.
 *
 * @name: name of the cache (informal)
 * @cache_op: contains the callback called when freeing a cache entry
 * @entry_size: The size of a cache entry, including
 *              struct mb_cache_entry
 * @indexes_count: number of additional indexes in the cache. Must equal
 *                 MB_CACHE_INDEXES_COUNT if the number of indexes is
 *                 hardwired.
 * @bucket_bits: log2(number of hash buckets)
 */
struct mb_cache *
mb_cache_create(const char *name, struct mb_cache_op *cache_op,
		size_t entry_size, int indexes_count, int bucket_bits)
{
	int m=0, n, bucket_count = 1 << bucket_bits;
	struct mb_cache *cache = NULL;

	if(entry_size < sizeof(struct mb_cache_entry) +
	   indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
		return NULL;

	cache = kmalloc(sizeof(struct mb_cache) +
	                indexes_count * sizeof(struct list_head), GFP_KERNEL);
	if (!cache)
		goto fail;
	cache->c_name = name;
	cache->c_op.free = NULL;
	if (cache_op)
		cache->c_op.free = cache_op->free;
	atomic_set(&cache->c_entry_count, 0);
	cache->c_bucket_bits = bucket_bits;
#ifdef MB_CACHE_INDEXES_COUNT
	mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
#else
	cache->c_indexes_count = indexes_count;
#endif
	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
	                              GFP_KERNEL);
	if (!cache->c_block_hash)
		goto fail;
	for (n=0; n<bucket_count; n++)
		INIT_LIST_HEAD(&cache->c_block_hash[n]);
	for (m=0; m<indexes_count; m++) {
		cache->c_indexes_hash[m] = kmalloc(bucket_count *
		                                 sizeof(struct list_head),
		                                 GFP_KERNEL);
		if (!cache->c_indexes_hash[m])
			goto fail;
		for (n=0; n<bucket_count; n++)
			INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
	}
	cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
	if (!cache->c_entry_cache)
		goto fail;

	spin_lock(&mb_cache_spinlock);
	list_add(&cache->c_cache_list, &mb_cache_list);
	spin_unlock(&mb_cache_spinlock);
	return cache;

fail:
	if (cache) {
		while (--m >= 0)
			kfree(cache->c_indexes_hash[m]);
		kfree(cache->c_block_hash);
		kfree(cache);
	}
	return NULL;
}


/*
 * mb_cache_shrink()
 *
 * Removes all cache entries of a device from the cache. All cache entries
 * currently in use cannot be freed, and thus remain in the cache. All others
 * are freed.
 *
 * @bdev: which device's cache entries to shrink
 */
void
mb_cache_shrink(struct block_device *bdev)
{
	LIST_HEAD(free_list);
	struct list_head *l, *ltmp;

	spin_lock(&mb_cache_spinlock);
	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
		struct mb_cache_entry *ce =
			list_entry(l, struct mb_cache_entry, e_lru_list);
		if (ce->e_bdev == bdev) {
			list_move_tail(&ce->e_lru_list, &free_list);
			__mb_cache_entry_unhash(ce);
		}
	}
	spin_unlock(&mb_cache_spinlock);
	list_for_each_safe(l, ltmp, &free_list) {
		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
						   e_lru_list), GFP_KERNEL);
	}
}


/*
 * mb_cache_destroy()
 *
 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
 * and then destroys it. If this was the last mbcache, un-registers the
 * mbcache from kernel memory management.
 */
void
mb_cache_destroy(struct mb_cache *cache)
{
	LIST_HEAD(free_list);
	struct list_head *l, *ltmp;
	int n;

	spin_lock(&mb_cache_spinlock);
	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
		struct mb_cache_entry *ce =
			list_entry(l, struct mb_cache_entry, e_lru_list);
		if (ce->e_cache == cache) {
			list_move_tail(&ce->e_lru_list, &free_list);
			__mb_cache_entry_unhash(ce);
		}
	}
	list_del(&cache->c_cache_list);
	spin_unlock(&mb_cache_spinlock);

	list_for_each_safe(l, ltmp, &free_list) {
		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
						   e_lru_list), GFP_KERNEL);
	}

	if (atomic_read(&cache->c_entry_count) > 0) {
		mb_error("cache %s: %d orphaned entries",
			  cache->c_name,
			  atomic_read(&cache->c_entry_count));
	}

	kmem_cache_destroy(cache->c_entry_cache);

	for (n=0; n < mb_cache_indexes(cache); n++)
		kfree(cache->c_indexes_hash[n]);
	kfree(cache->c_block_hash);
	kfree(cache);
}


/*
 * mb_cache_entry_alloc()
 *
 * Allocates a new cache entry. The new entry will not be valid initially,
 * and thus cannot be looked up yet. It should be filled with data, and
 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
 * if no more memory was available.
 */
struct mb_cache_entry *
mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
{
	struct mb_cache_entry *ce;

	ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
	if (ce) {
		atomic_inc(&cache->c_entry_count);
		INIT_LIST_HEAD(&ce->e_lru_list);
		INIT_LIST_HEAD(&ce->e_block_list);
		ce->e_cache = cache;
		ce->e_used = 1 + MB_CACHE_WRITER;
		ce->e_queued = 0;
	}
	return ce;
}


/*
 * mb_cache_entry_insert()
 *
 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
 * the cache. After this, the cache entry can be looked up, but is not yet
 * in the lru list as the caller still holds a handle to it. Returns 0 on
 * success, or -EBUSY if a cache entry for that device + inode exists
 * already (this may happen after a failed lookup, but when another process
 * has inserted the same cache entry in the meantime).
 *
 * @bdev: device the cache entry belongs to
 * @block: block number
 * @keys: array of additional keys. There must be indexes_count entries
 *        in the array (as specified when creating the cache).
 */
int
mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
		      sector_t block, unsigned int keys[])
{
	struct mb_cache *cache = ce->e_cache;
	unsigned int bucket;
	struct list_head *l;
	int error = -EBUSY, n;

	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
			   cache->c_bucket_bits);
	spin_lock(&mb_cache_spinlock);
	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
		struct mb_cache_entry *ce =
			list_entry(l, struct mb_cache_entry, e_block_list);
		if (ce->e_bdev == bdev && ce->e_block == block)
			goto out;
	}
	__mb_cache_entry_unhash(ce);
	ce->e_bdev = bdev;
	ce->e_block = block;
	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
	for (n=0; n<mb_cache_indexes(cache); n++) {
		ce->e_indexes[n].o_key = keys[n];
		bucket = hash_long(keys[n], cache->c_bucket_bits);
		list_add(&ce->e_indexes[n].o_list,
			 &cache->c_indexes_hash[n][bucket]);
	}
	error = 0;
out:
	spin_unlock(&mb_cache_spinlock);
	return error;
}


/*
 * mb_cache_entry_release()
 *
 * Release a handle to a cache entry. When the last handle to a cache entry
 * is released it is either freed (if it is invalid) or otherwise inserted
 * in to the lru list.
 */
void
mb_cache_entry_release(struct mb_cache_entry *ce)
{
	spin_lock(&mb_cache_spinlock);
	__mb_cache_entry_release_unlock(ce);
}


/*
 * mb_cache_entry_free()
 *
 * This is equivalent to the sequence mb_cache_entry_takeout() --
 * mb_cache_entry_release().
 */
void
mb_cache_entry_free(struct mb_cache_entry *ce)
{
	spin_lock(&mb_cache_spinlock);
	mb_assert(list_empty(&ce->e_lru_list));
	__mb_cache_entry_unhash(ce);
	__mb_cache_entry_release_unlock(ce);
}


/*
 * mb_cache_entry_get()
 *
 * Get a cache entry  by device / block number. (There can only be one entry
 * in the cache per device and block.) Returns NULL if no such cache entry
 * exists. The returned cache entry is locked for exclusive access ("single
 * writer").
 */
struct mb_cache_entry *
mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
		   sector_t block)
{
	unsigned int bucket;
	struct list_head *l;
	struct mb_cache_entry *ce;

	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
			   cache->c_bucket_bits);
	spin_lock(&mb_cache_spinlock);
	list_for_each(l, &cache->c_block_hash[bucket]) {
		ce = list_entry(l, struct mb_cache_entry, e_block_list);
		if (ce->e_bdev == bdev && ce->e_block == block) {
			DEFINE_WAIT(wait);

			if (!list_empty(&ce->e_lru_list))
				list_del_init(&ce->e_lru_list);

			while (ce->e_used > 0) {
				ce->e_queued++;
				prepare_to_wait(&mb_cache_queue, &wait,
						TASK_UNINTERRUPTIBLE);
				spin_unlock(&mb_cache_spinlock);
				schedule();
				spin_lock(&mb_cache_spinlock);
				ce->e_queued--;
			}
			finish_wait(&mb_cache_queue, &wait);
			ce->e_used += 1 + MB_CACHE_WRITER;

			if (!__mb_cache_entry_is_hashed(ce)) {
				__mb_cache_entry_release_unlock(ce);
				return NULL;
			}
			goto cleanup;
		}
	}
	ce = NULL;

cleanup:
	spin_unlock(&mb_cache_spinlock);
	return ce;
}

#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)

static struct mb_cache_entry *
__mb_cache_entry_find(struct list_head *l, struct list_head *head,
		      int index, struct block_device *bdev, unsigned int key)
{
	while (l != head) {
		struct mb_cache_entry *ce =
			list_entry(l, struct mb_cache_entry,
			           e_indexes[index].o_list);
		if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
			DEFINE_WAIT(wait);

			if (!list_empty(&ce->e_lru_list))
				list_del_init(&ce->e_lru_list);

			/* Incrementing before holding the lock gives readers
			   priority over writers. */
			ce->e_used++;
			while (ce->e_used >= MB_CACHE_WRITER) {
				ce->e_queued++;
				prepare_to_wait(&mb_cache_queue, &wait,
						TASK_UNINTERRUPTIBLE);
				spin_unlock(&mb_cache_spinlock);
				schedule();
				spin_lock(&mb_cache_spinlock);
				ce->e_queued--;
			}
			finish_wait(&mb_cache_queue, &wait);

			if (!__mb_cache_entry_is_hashed(ce)) {
				__mb_cache_entry_release_unlock(ce);
				spin_lock(&mb_cache_spinlock);
				return ERR_PTR(-EAGAIN);
			}
			return ce;
		}
		l = l->next;
	}
	return NULL;
}


/*
 * mb_cache_entry_find_first()
 *
 * Find the first cache entry on a given device with a certain key in
 * an additional index. Additonal matches can be found with
 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
 * returned cache entry is locked for shared access ("multiple readers").
 *
 * @cache: the cache to search
 * @index: the number of the additonal index to search (0<=index<indexes_count)
 * @bdev: the device the cache entry should belong to
 * @key: the key in the index
 */
struct mb_cache_entry *
mb_cache_entry_find_first(struct mb_cache *cache, int index,
			  struct block_device *bdev, unsigned int key)
{
	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
	struct list_head *l;
	struct mb_cache_entry *ce;

	mb_assert(index < mb_cache_indexes(cache));
	spin_lock(&mb_cache_spinlock);
	l = cache->c_indexes_hash[index][bucket].next;
	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
	                           index, bdev, key);
	spin_unlock(&mb_cache_spinlock);
	return ce;
}


/*
 * mb_cache_entry_find_next()
 *
 * Find the next cache entry on a given device with a certain key in an
 * additional index. Returns NULL if no match could be found. The previous
 * entry is atomatically released, so that mb_cache_entry_find_next() can
 * be called like this:
 *
 * entry = mb_cache_entry_find_first();
 * while (entry) {
 * 	...
 *	entry = mb_cache_entry_find_next(entry, ...);
 * }
 *
 * @prev: The previous match
 * @index: the number of the additonal index to search (0<=index<indexes_count)
 * @bdev: the device the cache entry should belong to
 * @key: the key in the index
 */
struct mb_cache_entry *
mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
			 struct block_device *bdev, unsigned int key)
{
	struct mb_cache *cache = prev->e_cache;
	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
	struct list_head *l;
	struct mb_cache_entry *ce;

	mb_assert(index < mb_cache_indexes(cache));
	spin_lock(&mb_cache_spinlock);
	l = prev->e_indexes[index].o_list.next;
	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
	                           index, bdev, key);
	__mb_cache_entry_release_unlock(prev);
	return ce;
}

#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */

static int __init init_mbcache(void)
{
	register_shrinker(&mb_cache_shrinker);
	return 0;
}

static void __exit exit_mbcache(void)
{
	unregister_shrinker(&mb_cache_shrinker);
}

module_init(init_mbcache)
module_exit(exit_mbcache)

back to top