Revision 7b6efc2bc4f19952b25ebf9b236e5ac43cd386c2 authored by Andrea Arcangeli on 01 November 2011, 00:08:26 UTC, committed by Linus Torvalds on 01 November 2011, 00:30:48 UTC
This replaces ptep_clear_flush() with ptep_get_and_clear() and a single
flush_tlb_range() at the end of the loop, to avoid sending one IPI for
each page.

The mmu_notifier_invalidate_range_start/end section is enlarged
accordingly but this is not going to fundamentally change things.  It was
more by accident that the region under mremap was for the most part still
available for secondary MMUs: the primary MMU was never allowed to
reliably access that region for the duration of the mremap (modulo
trapping SIGSEGV on the old address range which sounds unpractical and
flakey).  If users wants secondary MMUs not to lose access to a large
region under mremap they should reduce the mremap size accordingly in
userland and run multiple calls.  Overall this will run faster so it's
actually going to reduce the time the region is under mremap for the
primary MMU which should provide a net benefit to apps.

For KVM this is a noop because the guest physical memory is never
mremapped, there's just no point it ever moving it while guest runs.  One
target of this optimization is JVM GC (so unrelated to the mmu notifier
logic).

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent ebed484
Raw File
bsearch.c
/*
 * A generic implementation of binary search for the Linux kernel
 *
 * Copyright (C) 2008-2009 Ksplice, Inc.
 * Author: Tim Abbott <tabbott@ksplice.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; version 2.
 */

#include <linux/module.h>
#include <linux/bsearch.h>

/*
 * bsearch - binary search an array of elements
 * @key: pointer to item being searched for
 * @base: pointer to first element to search
 * @num: number of elements
 * @size: size of each element
 * @cmp: pointer to comparison function
 *
 * This function does a binary search on the given array.  The
 * contents of the array should already be in ascending sorted order
 * under the provided comparison function.
 *
 * Note that the key need not have the same type as the elements in
 * the array, e.g. key could be a string and the comparison function
 * could compare the string with the struct's name field.  However, if
 * the key and elements in the array are of the same type, you can use
 * the same comparison function for both sort() and bsearch().
 */
void *bsearch(const void *key, const void *base, size_t num, size_t size,
	      int (*cmp)(const void *key, const void *elt))
{
	size_t start = 0, end = num;
	int result;

	while (start < end) {
		size_t mid = start + (end - start) / 2;

		result = cmp(key, base + mid * size);
		if (result < 0)
			end = mid;
		else if (result > 0)
			start = mid + 1;
		else
			return (void *)base + mid * size;
	}

	return NULL;
}
EXPORT_SYMBOL(bsearch);
back to top