https://github.com/torvalds/linux
Revision 7e76f34fa103677a27d96a7cfef8ce61389a32de authored by Aruna Balakrishnaiah on 08 August 2013, 17:03:49 UTC, committed by Benjamin Herrenschmidt on 09 August 2013, 08:06:40 UTC
When reading from pstore there is a buffer overflow during decompression
due to the header added in unzip_oops. Remove unzip_oops and call
pstore_decompress directly in nvram_pstore_read. Allocate buffer of size
report_length of the oops header as header will not be deallocated in pstore.
Since we have 'openssl' command line tool to decompress the compressed data,
dump the compressed data in case decompression fails instead of not dumping
anything.

Signed-off-by: Aruna Balakrishnaiah <aruna@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
1 parent 4e90a2a
Raw File
Tip revision: 7e76f34fa103677a27d96a7cfef8ce61389a32de authored by Aruna Balakrishnaiah on 08 August 2013, 17:03:49 UTC
powerpc/pseries: Fix buffer overflow when reading from pstore
Tip revision: 7e76f34
rmd256.c
/*
 * Cryptographic API.
 *
 * RIPEMD-256 - RACE Integrity Primitives Evaluation Message Digest.
 *
 * Based on the reference implementation by Antoon Bosselaers, ESAT-COSIC
 *
 * Copyright (c) 2008 Adrian-Ken Rueegsegger <ken@codelabs.ch>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <asm/byteorder.h>

#include "ripemd.h"

struct rmd256_ctx {
	u64 byte_count;
	u32 state[8];
	__le32 buffer[16];
};

#define K1  RMD_K1
#define K2  RMD_K2
#define K3  RMD_K3
#define K4  RMD_K4
#define KK1 RMD_K6
#define KK2 RMD_K7
#define KK3 RMD_K8
#define KK4 RMD_K1

#define F1(x, y, z) (x ^ y ^ z)		/* XOR */
#define F2(x, y, z) (z ^ (x & (y ^ z)))	/* x ? y : z */
#define F3(x, y, z) ((x | ~y) ^ z)
#define F4(x, y, z) (y ^ (z & (x ^ y)))	/* z ? x : y */

#define ROUND(a, b, c, d, f, k, x, s)  { \
	(a) += f((b), (c), (d)) + le32_to_cpup(&(x)) + (k); \
	(a) = rol32((a), (s)); \
}

static void rmd256_transform(u32 *state, const __le32 *in)
{
	u32 aa, bb, cc, dd, aaa, bbb, ccc, ddd, tmp;

	/* Initialize left lane */
	aa = state[0];
	bb = state[1];
	cc = state[2];
	dd = state[3];

	/* Initialize right lane */
	aaa = state[4];
	bbb = state[5];
	ccc = state[6];
	ddd = state[7];

	/* round 1: left lane */
	ROUND(aa, bb, cc, dd, F1, K1, in[0],  11);
	ROUND(dd, aa, bb, cc, F1, K1, in[1],  14);
	ROUND(cc, dd, aa, bb, F1, K1, in[2],  15);
	ROUND(bb, cc, dd, aa, F1, K1, in[3],  12);
	ROUND(aa, bb, cc, dd, F1, K1, in[4],   5);
	ROUND(dd, aa, bb, cc, F1, K1, in[5],   8);
	ROUND(cc, dd, aa, bb, F1, K1, in[6],   7);
	ROUND(bb, cc, dd, aa, F1, K1, in[7],   9);
	ROUND(aa, bb, cc, dd, F1, K1, in[8],  11);
	ROUND(dd, aa, bb, cc, F1, K1, in[9],  13);
	ROUND(cc, dd, aa, bb, F1, K1, in[10], 14);
	ROUND(bb, cc, dd, aa, F1, K1, in[11], 15);
	ROUND(aa, bb, cc, dd, F1, K1, in[12],  6);
	ROUND(dd, aa, bb, cc, F1, K1, in[13],  7);
	ROUND(cc, dd, aa, bb, F1, K1, in[14],  9);
	ROUND(bb, cc, dd, aa, F1, K1, in[15],  8);

	/* round 1: right lane */
	ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[5],   8);
	ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[14],  9);
	ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[7],   9);
	ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[0],  11);
	ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[9],  13);
	ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[2],  15);
	ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[11], 15);
	ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[4],   5);
	ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[13],  7);
	ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[6],   7);
	ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[15],  8);
	ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[8],  11);
	ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[1],  14);
	ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[10], 14);
	ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[3],  12);
	ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[12],  6);

	/* Swap contents of "a" registers */
	tmp = aa; aa = aaa; aaa = tmp;

	/* round 2: left lane */
	ROUND(aa, bb, cc, dd, F2, K2, in[7],   7);
	ROUND(dd, aa, bb, cc, F2, K2, in[4],   6);
	ROUND(cc, dd, aa, bb, F2, K2, in[13],  8);
	ROUND(bb, cc, dd, aa, F2, K2, in[1],  13);
	ROUND(aa, bb, cc, dd, F2, K2, in[10], 11);
	ROUND(dd, aa, bb, cc, F2, K2, in[6],   9);
	ROUND(cc, dd, aa, bb, F2, K2, in[15],  7);
	ROUND(bb, cc, dd, aa, F2, K2, in[3],  15);
	ROUND(aa, bb, cc, dd, F2, K2, in[12],  7);
	ROUND(dd, aa, bb, cc, F2, K2, in[0],  12);
	ROUND(cc, dd, aa, bb, F2, K2, in[9],  15);
	ROUND(bb, cc, dd, aa, F2, K2, in[5],   9);
	ROUND(aa, bb, cc, dd, F2, K2, in[2],  11);
	ROUND(dd, aa, bb, cc, F2, K2, in[14],  7);
	ROUND(cc, dd, aa, bb, F2, K2, in[11], 13);
	ROUND(bb, cc, dd, aa, F2, K2, in[8],  12);

	/* round 2: right lane */
	ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[6],   9);
	ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[11], 13);
	ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[3],  15);
	ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[7],   7);
	ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[0],  12);
	ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[13],  8);
	ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[5],   9);
	ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[10], 11);
	ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[14],  7);
	ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[15],  7);
	ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[8],  12);
	ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[12],  7);
	ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[4],   6);
	ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[9],  15);
	ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[1],  13);
	ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[2],  11);

	/* Swap contents of "b" registers */
	tmp = bb; bb = bbb; bbb = tmp;

	/* round 3: left lane */
	ROUND(aa, bb, cc, dd, F3, K3, in[3],  11);
	ROUND(dd, aa, bb, cc, F3, K3, in[10], 13);
	ROUND(cc, dd, aa, bb, F3, K3, in[14],  6);
	ROUND(bb, cc, dd, aa, F3, K3, in[4],   7);
	ROUND(aa, bb, cc, dd, F3, K3, in[9],  14);
	ROUND(dd, aa, bb, cc, F3, K3, in[15],  9);
	ROUND(cc, dd, aa, bb, F3, K3, in[8],  13);
	ROUND(bb, cc, dd, aa, F3, K3, in[1],  15);
	ROUND(aa, bb, cc, dd, F3, K3, in[2],  14);
	ROUND(dd, aa, bb, cc, F3, K3, in[7],   8);
	ROUND(cc, dd, aa, bb, F3, K3, in[0],  13);
	ROUND(bb, cc, dd, aa, F3, K3, in[6],   6);
	ROUND(aa, bb, cc, dd, F3, K3, in[13],  5);
	ROUND(dd, aa, bb, cc, F3, K3, in[11], 12);
	ROUND(cc, dd, aa, bb, F3, K3, in[5],   7);
	ROUND(bb, cc, dd, aa, F3, K3, in[12],  5);

	/* round 3: right lane */
	ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[15],  9);
	ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[5],   7);
	ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[1],  15);
	ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[3],  11);
	ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[7],   8);
	ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[14],  6);
	ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[6],   6);
	ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[9],  14);
	ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[11], 12);
	ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[8],  13);
	ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[12],  5);
	ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[2],  14);
	ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[10], 13);
	ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[0],  13);
	ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[4],   7);
	ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[13],  5);

	/* Swap contents of "c" registers */
	tmp = cc; cc = ccc; ccc = tmp;

	/* round 4: left lane */
	ROUND(aa, bb, cc, dd, F4, K4, in[1],  11);
	ROUND(dd, aa, bb, cc, F4, K4, in[9],  12);
	ROUND(cc, dd, aa, bb, F4, K4, in[11], 14);
	ROUND(bb, cc, dd, aa, F4, K4, in[10], 15);
	ROUND(aa, bb, cc, dd, F4, K4, in[0],  14);
	ROUND(dd, aa, bb, cc, F4, K4, in[8],  15);
	ROUND(cc, dd, aa, bb, F4, K4, in[12],  9);
	ROUND(bb, cc, dd, aa, F4, K4, in[4],   8);
	ROUND(aa, bb, cc, dd, F4, K4, in[13],  9);
	ROUND(dd, aa, bb, cc, F4, K4, in[3],  14);
	ROUND(cc, dd, aa, bb, F4, K4, in[7],   5);
	ROUND(bb, cc, dd, aa, F4, K4, in[15],  6);
	ROUND(aa, bb, cc, dd, F4, K4, in[14],  8);
	ROUND(dd, aa, bb, cc, F4, K4, in[5],   6);
	ROUND(cc, dd, aa, bb, F4, K4, in[6],   5);
	ROUND(bb, cc, dd, aa, F4, K4, in[2],  12);

	/* round 4: right lane */
	ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[8],  15);
	ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[6],   5);
	ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[4],   8);
	ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[1],  11);
	ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[3],  14);
	ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[11], 14);
	ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[15],  6);
	ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[0],  14);
	ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[5],   6);
	ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[12],  9);
	ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[2],  12);
	ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[13],  9);
	ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[9],  12);
	ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[7],   5);
	ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[10], 15);
	ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[14],  8);

	/* Swap contents of "d" registers */
	tmp = dd; dd = ddd; ddd = tmp;

	/* combine results */
	state[0] += aa;
	state[1] += bb;
	state[2] += cc;
	state[3] += dd;
	state[4] += aaa;
	state[5] += bbb;
	state[6] += ccc;
	state[7] += ddd;

	return;
}

static int rmd256_init(struct shash_desc *desc)
{
	struct rmd256_ctx *rctx = shash_desc_ctx(desc);

	rctx->byte_count = 0;

	rctx->state[0] = RMD_H0;
	rctx->state[1] = RMD_H1;
	rctx->state[2] = RMD_H2;
	rctx->state[3] = RMD_H3;
	rctx->state[4] = RMD_H5;
	rctx->state[5] = RMD_H6;
	rctx->state[6] = RMD_H7;
	rctx->state[7] = RMD_H8;

	memset(rctx->buffer, 0, sizeof(rctx->buffer));

	return 0;
}

static int rmd256_update(struct shash_desc *desc, const u8 *data,
			 unsigned int len)
{
	struct rmd256_ctx *rctx = shash_desc_ctx(desc);
	const u32 avail = sizeof(rctx->buffer) - (rctx->byte_count & 0x3f);

	rctx->byte_count += len;

	/* Enough space in buffer? If so copy and we're done */
	if (avail > len) {
		memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
		       data, len);
		goto out;
	}

	memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
	       data, avail);

	rmd256_transform(rctx->state, rctx->buffer);
	data += avail;
	len -= avail;

	while (len >= sizeof(rctx->buffer)) {
		memcpy(rctx->buffer, data, sizeof(rctx->buffer));
		rmd256_transform(rctx->state, rctx->buffer);
		data += sizeof(rctx->buffer);
		len -= sizeof(rctx->buffer);
	}

	memcpy(rctx->buffer, data, len);

out:
	return 0;
}

/* Add padding and return the message digest. */
static int rmd256_final(struct shash_desc *desc, u8 *out)
{
	struct rmd256_ctx *rctx = shash_desc_ctx(desc);
	u32 i, index, padlen;
	__le64 bits;
	__le32 *dst = (__le32 *)out;
	static const u8 padding[64] = { 0x80, };

	bits = cpu_to_le64(rctx->byte_count << 3);

	/* Pad out to 56 mod 64 */
	index = rctx->byte_count & 0x3f;
	padlen = (index < 56) ? (56 - index) : ((64+56) - index);
	rmd256_update(desc, padding, padlen);

	/* Append length */
	rmd256_update(desc, (const u8 *)&bits, sizeof(bits));

	/* Store state in digest */
	for (i = 0; i < 8; i++)
		dst[i] = cpu_to_le32p(&rctx->state[i]);

	/* Wipe context */
	memset(rctx, 0, sizeof(*rctx));

	return 0;
}

static struct shash_alg alg = {
	.digestsize	=	RMD256_DIGEST_SIZE,
	.init		=	rmd256_init,
	.update		=	rmd256_update,
	.final		=	rmd256_final,
	.descsize	=	sizeof(struct rmd256_ctx),
	.base		=	{
		.cra_name	 =	"rmd256",
		.cra_flags	 =	CRYPTO_ALG_TYPE_SHASH,
		.cra_blocksize	 =	RMD256_BLOCK_SIZE,
		.cra_module	 =	THIS_MODULE,
	}
};

static int __init rmd256_mod_init(void)
{
	return crypto_register_shash(&alg);
}

static void __exit rmd256_mod_fini(void)
{
	crypto_unregister_shash(&alg);
}

module_init(rmd256_mod_init);
module_exit(rmd256_mod_fini);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Adrian-Ken Rueegsegger <ken@codelabs.ch>");
MODULE_DESCRIPTION("RIPEMD-256 Message Digest");
back to top