Revision 7f453c24b95a085fc7bd35d53b33abc4dc5a048b authored by Peter Zijlstra on 21 July 2009, 11:19:40 UTC, committed by Peter Zijlstra on 22 July 2009, 16:05:56 UTC
Anton noted that for inherited counters the counter-id as provided by
PERF_SAMPLE_ID isn't mappable to the id found through PERF_RECORD_ID
because each inherited counter gets its own id.

His suggestion was to always return the parent counter id, since that
is the primary counter id as exposed. However, these inherited
counters have a unique identifier so that events like
PERF_EVENT_PERIOD and PERF_EVENT_THROTTLE can be specific about which
counter gets modified, which is important when trying to normalize the
sample streams.

This patch removes PERF_EVENT_PERIOD in favour of PERF_SAMPLE_PERIOD,
which is more useful anyway, since changing periods became a lot more
common than initially thought -- rendering PERF_EVENT_PERIOD the less
useful solution (also, PERF_SAMPLE_PERIOD reports the more accurate
value, since it reports the value used to trigger the overflow,
whereas PERF_EVENT_PERIOD simply reports the requested period changed,
which might only take effect on the next cycle).

This still leaves us PERF_EVENT_THROTTLE to consider, but since that
_should_ be a rare occurrence, and linking it to a primary id is the
most useful bit to diagnose the problem, we introduce a
PERF_SAMPLE_STREAM_ID, for those few cases where the full
reconstruction is important.

[Does change the ABI a little, but I see no other way out]

Suggested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1248095846.15751.8781.camel@twins>
1 parent 573402d
Raw File
ns_cgroup.c
/*
 * ns_cgroup.c - namespace cgroup subsystem
 *
 * Copyright 2006, 2007 IBM Corp
 */

#include <linux/module.h>
#include <linux/cgroup.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/slab.h>
#include <linux/nsproxy.h>

struct ns_cgroup {
	struct cgroup_subsys_state css;
};

struct cgroup_subsys ns_subsys;

static inline struct ns_cgroup *cgroup_to_ns(
		struct cgroup *cgroup)
{
	return container_of(cgroup_subsys_state(cgroup, ns_subsys_id),
			    struct ns_cgroup, css);
}

int ns_cgroup_clone(struct task_struct *task, struct pid *pid)
{
	char name[PROC_NUMBUF];

	snprintf(name, PROC_NUMBUF, "%d", pid_vnr(pid));
	return cgroup_clone(task, &ns_subsys, name);
}

/*
 * Rules:
 *   1. you can only enter a cgroup which is a descendant of your current
 *     cgroup
 *   2. you can only place another process into a cgroup if
 *     a. you have CAP_SYS_ADMIN
 *     b. your cgroup is an ancestor of task's destination cgroup
 *       (hence either you are in the same cgroup as task, or in an
 *        ancestor cgroup thereof)
 */
static int ns_can_attach(struct cgroup_subsys *ss,
		struct cgroup *new_cgroup, struct task_struct *task)
{
	if (current != task) {
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;

		if (!cgroup_is_descendant(new_cgroup, current))
			return -EPERM;
	}

	if (!cgroup_is_descendant(new_cgroup, task))
		return -EPERM;

	return 0;
}

/*
 * Rules: you can only create a cgroup if
 *     1. you are capable(CAP_SYS_ADMIN)
 *     2. the target cgroup is a descendant of your own cgroup
 */
static struct cgroup_subsys_state *ns_create(struct cgroup_subsys *ss,
						struct cgroup *cgroup)
{
	struct ns_cgroup *ns_cgroup;

	if (!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);
	if (!cgroup_is_descendant(cgroup, current))
		return ERR_PTR(-EPERM);

	ns_cgroup = kzalloc(sizeof(*ns_cgroup), GFP_KERNEL);
	if (!ns_cgroup)
		return ERR_PTR(-ENOMEM);
	return &ns_cgroup->css;
}

static void ns_destroy(struct cgroup_subsys *ss,
			struct cgroup *cgroup)
{
	struct ns_cgroup *ns_cgroup;

	ns_cgroup = cgroup_to_ns(cgroup);
	kfree(ns_cgroup);
}

struct cgroup_subsys ns_subsys = {
	.name = "ns",
	.can_attach = ns_can_attach,
	.create = ns_create,
	.destroy  = ns_destroy,
	.subsys_id = ns_subsys_id,
};
back to top