Revision 7f453c24b95a085fc7bd35d53b33abc4dc5a048b authored by Peter Zijlstra on 21 July 2009, 11:19:40 UTC, committed by Peter Zijlstra on 22 July 2009, 16:05:56 UTC
Anton noted that for inherited counters the counter-id as provided by
PERF_SAMPLE_ID isn't mappable to the id found through PERF_RECORD_ID
because each inherited counter gets its own id.

His suggestion was to always return the parent counter id, since that
is the primary counter id as exposed. However, these inherited
counters have a unique identifier so that events like
PERF_EVENT_PERIOD and PERF_EVENT_THROTTLE can be specific about which
counter gets modified, which is important when trying to normalize the
sample streams.

This patch removes PERF_EVENT_PERIOD in favour of PERF_SAMPLE_PERIOD,
which is more useful anyway, since changing periods became a lot more
common than initially thought -- rendering PERF_EVENT_PERIOD the less
useful solution (also, PERF_SAMPLE_PERIOD reports the more accurate
value, since it reports the value used to trigger the overflow,
whereas PERF_EVENT_PERIOD simply reports the requested period changed,
which might only take effect on the next cycle).

This still leaves us PERF_EVENT_THROTTLE to consider, but since that
_should_ be a rare occurrence, and linking it to a primary id is the
most useful bit to diagnose the problem, we introduce a
PERF_SAMPLE_STREAM_ID, for those few cases where the full
reconstruction is important.

[Does change the ABI a little, but I see no other way out]

Suggested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1248095846.15751.8781.camel@twins>
1 parent 573402d
Raw File
user.c
/*
 * The "user cache".
 *
 * (C) Copyright 1991-2000 Linus Torvalds
 *
 * We have a per-user structure to keep track of how many
 * processes, files etc the user has claimed, in order to be
 * able to have per-user limits for system resources. 
 */

#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/key.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/user_namespace.h>
#include "cred-internals.h"

struct user_namespace init_user_ns = {
	.kref = {
		.refcount	= ATOMIC_INIT(2),
	},
	.creator = &root_user,
};
EXPORT_SYMBOL_GPL(init_user_ns);

/*
 * UID task count cache, to get fast user lookup in "alloc_uid"
 * when changing user ID's (ie setuid() and friends).
 */

#define UIDHASH_MASK		(UIDHASH_SZ - 1)
#define __uidhashfn(uid)	(((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
#define uidhashentry(ns, uid)	((ns)->uidhash_table + __uidhashfn((uid)))

static struct kmem_cache *uid_cachep;

/*
 * The uidhash_lock is mostly taken from process context, but it is
 * occasionally also taken from softirq/tasklet context, when
 * task-structs get RCU-freed. Hence all locking must be softirq-safe.
 * But free_uid() is also called with local interrupts disabled, and running
 * local_bh_enable() with local interrupts disabled is an error - we'll run
 * softirq callbacks, and they can unconditionally enable interrupts, and
 * the caller of free_uid() didn't expect that..
 */
static DEFINE_SPINLOCK(uidhash_lock);

/* root_user.__count is 2, 1 for init task cred, 1 for init_user_ns->creator */
struct user_struct root_user = {
	.__count	= ATOMIC_INIT(2),
	.processes	= ATOMIC_INIT(1),
	.files		= ATOMIC_INIT(0),
	.sigpending	= ATOMIC_INIT(0),
	.locked_shm     = 0,
	.user_ns	= &init_user_ns,
#ifdef CONFIG_USER_SCHED
	.tg		= &init_task_group,
#endif
};

/*
 * These routines must be called with the uidhash spinlock held!
 */
static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
{
	hlist_add_head(&up->uidhash_node, hashent);
}

static void uid_hash_remove(struct user_struct *up)
{
	hlist_del_init(&up->uidhash_node);
	put_user_ns(up->user_ns);
}

#ifdef CONFIG_USER_SCHED

static void sched_destroy_user(struct user_struct *up)
{
	sched_destroy_group(up->tg);
}

static int sched_create_user(struct user_struct *up)
{
	int rc = 0;

	up->tg = sched_create_group(&root_task_group);
	if (IS_ERR(up->tg))
		rc = -ENOMEM;

	set_tg_uid(up);

	return rc;
}

#else	/* CONFIG_USER_SCHED */

static void sched_destroy_user(struct user_struct *up) { }
static int sched_create_user(struct user_struct *up) { return 0; }

#endif	/* CONFIG_USER_SCHED */

#if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)

static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
{
	struct user_struct *user;
	struct hlist_node *h;

	hlist_for_each_entry(user, h, hashent, uidhash_node) {
		if (user->uid == uid) {
			/* possibly resurrect an "almost deleted" object */
			if (atomic_inc_return(&user->__count) == 1)
				cancel_delayed_work(&user->work);
			return user;
		}
	}

	return NULL;
}

static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
static DEFINE_MUTEX(uids_mutex);

static inline void uids_mutex_lock(void)
{
	mutex_lock(&uids_mutex);
}

static inline void uids_mutex_unlock(void)
{
	mutex_unlock(&uids_mutex);
}

/* uid directory attributes */
#ifdef CONFIG_FAIR_GROUP_SCHED
static ssize_t cpu_shares_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);

	return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
}

static ssize_t cpu_shares_store(struct kobject *kobj,
				struct kobj_attribute *attr,
				const char *buf, size_t size)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
	unsigned long shares;
	int rc;

	sscanf(buf, "%lu", &shares);

	rc = sched_group_set_shares(up->tg, shares);

	return (rc ? rc : size);
}

static struct kobj_attribute cpu_share_attr =
	__ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   char *buf)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);

	return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
}

static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    const char *buf, size_t size)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
	unsigned long rt_runtime;
	int rc;

	sscanf(buf, "%ld", &rt_runtime);

	rc = sched_group_set_rt_runtime(up->tg, rt_runtime);

	return (rc ? rc : size);
}

static struct kobj_attribute cpu_rt_runtime_attr =
	__ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);

static ssize_t cpu_rt_period_show(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   char *buf)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);

	return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
}

static ssize_t cpu_rt_period_store(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    const char *buf, size_t size)
{
	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
	unsigned long rt_period;
	int rc;

	sscanf(buf, "%lu", &rt_period);

	rc = sched_group_set_rt_period(up->tg, rt_period);

	return (rc ? rc : size);
}

static struct kobj_attribute cpu_rt_period_attr =
	__ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
#endif

/* default attributes per uid directory */
static struct attribute *uids_attributes[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	&cpu_share_attr.attr,
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	&cpu_rt_runtime_attr.attr,
	&cpu_rt_period_attr.attr,
#endif
	NULL
};

/* the lifetime of user_struct is not managed by the core (now) */
static void uids_release(struct kobject *kobj)
{
	return;
}

static struct kobj_type uids_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = uids_attributes,
	.release = uids_release,
};

/*
 * Create /sys/kernel/uids/<uid>/cpu_share file for this user
 * We do not create this file for users in a user namespace (until
 * sysfs tagging is implemented).
 *
 * See Documentation/scheduler/sched-design-CFS.txt for ramifications.
 */
static int uids_user_create(struct user_struct *up)
{
	struct kobject *kobj = &up->kobj;
	int error;

	memset(kobj, 0, sizeof(struct kobject));
	if (up->user_ns != &init_user_ns)
		return 0;
	kobj->kset = uids_kset;
	error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
	if (error) {
		kobject_put(kobj);
		goto done;
	}

	kobject_uevent(kobj, KOBJ_ADD);
done:
	return error;
}

/* create these entries in sysfs:
 * 	"/sys/kernel/uids" directory
 * 	"/sys/kernel/uids/0" directory (for root user)
 * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
 */
int __init uids_sysfs_init(void)
{
	uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
	if (!uids_kset)
		return -ENOMEM;

	return uids_user_create(&root_user);
}

/* delayed work function to remove sysfs directory for a user and free up
 * corresponding structures.
 */
static void cleanup_user_struct(struct work_struct *w)
{
	struct user_struct *up = container_of(w, struct user_struct, work.work);
	unsigned long flags;
	int remove_user = 0;

	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
	 * atomic.
	 */
	uids_mutex_lock();

	spin_lock_irqsave(&uidhash_lock, flags);
	if (atomic_read(&up->__count) == 0) {
		uid_hash_remove(up);
		remove_user = 1;
	}
	spin_unlock_irqrestore(&uidhash_lock, flags);

	if (!remove_user)
		goto done;

	if (up->user_ns == &init_user_ns) {
		kobject_uevent(&up->kobj, KOBJ_REMOVE);
		kobject_del(&up->kobj);
		kobject_put(&up->kobj);
	}

	sched_destroy_user(up);
	key_put(up->uid_keyring);
	key_put(up->session_keyring);
	kmem_cache_free(uid_cachep, up);

done:
	uids_mutex_unlock();
}

/* IRQs are disabled and uidhash_lock is held upon function entry.
 * IRQ state (as stored in flags) is restored and uidhash_lock released
 * upon function exit.
 */
static void free_user(struct user_struct *up, unsigned long flags)
{
	spin_unlock_irqrestore(&uidhash_lock, flags);
	INIT_DELAYED_WORK(&up->work, cleanup_user_struct);
	schedule_delayed_work(&up->work, msecs_to_jiffies(1000));
}

#else	/* CONFIG_USER_SCHED && CONFIG_SYSFS */

static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
{
	struct user_struct *user;
	struct hlist_node *h;

	hlist_for_each_entry(user, h, hashent, uidhash_node) {
		if (user->uid == uid) {
			atomic_inc(&user->__count);
			return user;
		}
	}

	return NULL;
}

int uids_sysfs_init(void) { return 0; }
static inline int uids_user_create(struct user_struct *up) { return 0; }
static inline void uids_mutex_lock(void) { }
static inline void uids_mutex_unlock(void) { }

/* IRQs are disabled and uidhash_lock is held upon function entry.
 * IRQ state (as stored in flags) is restored and uidhash_lock released
 * upon function exit.
 */
static void free_user(struct user_struct *up, unsigned long flags)
{
	uid_hash_remove(up);
	spin_unlock_irqrestore(&uidhash_lock, flags);
	sched_destroy_user(up);
	key_put(up->uid_keyring);
	key_put(up->session_keyring);
	kmem_cache_free(uid_cachep, up);
}

#endif

#if defined(CONFIG_RT_GROUP_SCHED) && defined(CONFIG_USER_SCHED)
/*
 * We need to check if a setuid can take place. This function should be called
 * before successfully completing the setuid.
 */
int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
{

	return sched_rt_can_attach(up->tg, tsk);

}
#else
int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
{
	return 1;
}
#endif

/*
 * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
 * caller must undo that ref with free_uid().
 *
 * If the user_struct could not be found, return NULL.
 */
struct user_struct *find_user(uid_t uid)
{
	struct user_struct *ret;
	unsigned long flags;
	struct user_namespace *ns = current_user_ns();

	spin_lock_irqsave(&uidhash_lock, flags);
	ret = uid_hash_find(uid, uidhashentry(ns, uid));
	spin_unlock_irqrestore(&uidhash_lock, flags);
	return ret;
}

void free_uid(struct user_struct *up)
{
	unsigned long flags;

	if (!up)
		return;

	local_irq_save(flags);
	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
		free_user(up, flags);
	else
		local_irq_restore(flags);
}

struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
{
	struct hlist_head *hashent = uidhashentry(ns, uid);
	struct user_struct *up, *new;

	/* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
	 * atomic.
	 */
	uids_mutex_lock();

	spin_lock_irq(&uidhash_lock);
	up = uid_hash_find(uid, hashent);
	spin_unlock_irq(&uidhash_lock);

	if (!up) {
		new = kmem_cache_zalloc(uid_cachep, GFP_KERNEL);
		if (!new)
			goto out_unlock;

		new->uid = uid;
		atomic_set(&new->__count, 1);

		if (sched_create_user(new) < 0)
			goto out_free_user;

		new->user_ns = get_user_ns(ns);

		if (uids_user_create(new))
			goto out_destoy_sched;

		/*
		 * Before adding this, check whether we raced
		 * on adding the same user already..
		 */
		spin_lock_irq(&uidhash_lock);
		up = uid_hash_find(uid, hashent);
		if (up) {
			/* This case is not possible when CONFIG_USER_SCHED
			 * is defined, since we serialize alloc_uid() using
			 * uids_mutex. Hence no need to call
			 * sched_destroy_user() or remove_user_sysfs_dir().
			 */
			key_put(new->uid_keyring);
			key_put(new->session_keyring);
			kmem_cache_free(uid_cachep, new);
		} else {
			uid_hash_insert(new, hashent);
			up = new;
		}
		spin_unlock_irq(&uidhash_lock);
	}

	uids_mutex_unlock();

	return up;

out_destoy_sched:
	sched_destroy_user(new);
	put_user_ns(new->user_ns);
out_free_user:
	kmem_cache_free(uid_cachep, new);
out_unlock:
	uids_mutex_unlock();
	return NULL;
}

static int __init uid_cache_init(void)
{
	int n;

	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);

	for(n = 0; n < UIDHASH_SZ; ++n)
		INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);

	/* Insert the root user immediately (init already runs as root) */
	spin_lock_irq(&uidhash_lock);
	uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
	spin_unlock_irq(&uidhash_lock);

	return 0;
}

module_init(uid_cache_init);
back to top