https://github.com/torvalds/linux
Revision 806fd188ce2a4f8b587e83e73c478e6484fbfa55 authored by Florian Fainelli on 14 April 2020, 22:39:52 UTC, committed by David S. Miller on 16 April 2020, 20:47:53 UTC
After commit bfcb813203e619a8960a819bf533ad2a108d8105 ("net: dsa:
configure the MTU for switch ports") my Lamobo R1 platform which uses
an allwinner,sun7i-a20-gmac compatible Ethernet MAC started to fail
by rejecting a MTU of 1536. The reason for that is that the DMA
capabilities are not readable on this version of the IP, and there
is also no 'tx-fifo-depth' property being provided in Device Tree. The
property is documented as optional, and is not provided.

Chen-Yu indicated that the FIFO sizes are 4KB for TX and 16KB for RX, so
provide these values through platform data as an immediate fix until
various Device Tree sources get updated accordingly.

Fixes: eaf4fac47807 ("net: stmmac: Do not accept invalid MTU values")
Suggested-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
1 parent e045124
Raw File
Tip revision: 806fd188ce2a4f8b587e83e73c478e6484fbfa55 authored by Florian Fainelli on 14 April 2020, 22:39:52 UTC
net: stmmac: dwmac-sunxi: Provide TX and RX fifo sizes
Tip revision: 806fd18
list_sort.c
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/list_sort.h>
#include <linux/list.h>

typedef int __attribute__((nonnull(2,3))) (*cmp_func)(void *,
		struct list_head const *, struct list_head const *);

/*
 * Returns a list organized in an intermediate format suited
 * to chaining of merge() calls: null-terminated, no reserved or
 * sentinel head node, "prev" links not maintained.
 */
__attribute__((nonnull(2,3,4)))
static struct list_head *merge(void *priv, cmp_func cmp,
				struct list_head *a, struct list_head *b)
{
	struct list_head *head, **tail = &head;

	for (;;) {
		/* if equal, take 'a' -- important for sort stability */
		if (cmp(priv, a, b) <= 0) {
			*tail = a;
			tail = &a->next;
			a = a->next;
			if (!a) {
				*tail = b;
				break;
			}
		} else {
			*tail = b;
			tail = &b->next;
			b = b->next;
			if (!b) {
				*tail = a;
				break;
			}
		}
	}
	return head;
}

/*
 * Combine final list merge with restoration of standard doubly-linked
 * list structure.  This approach duplicates code from merge(), but
 * runs faster than the tidier alternatives of either a separate final
 * prev-link restoration pass, or maintaining the prev links
 * throughout.
 */
__attribute__((nonnull(2,3,4,5)))
static void merge_final(void *priv, cmp_func cmp, struct list_head *head,
			struct list_head *a, struct list_head *b)
{
	struct list_head *tail = head;
	u8 count = 0;

	for (;;) {
		/* if equal, take 'a' -- important for sort stability */
		if (cmp(priv, a, b) <= 0) {
			tail->next = a;
			a->prev = tail;
			tail = a;
			a = a->next;
			if (!a)
				break;
		} else {
			tail->next = b;
			b->prev = tail;
			tail = b;
			b = b->next;
			if (!b) {
				b = a;
				break;
			}
		}
	}

	/* Finish linking remainder of list b on to tail */
	tail->next = b;
	do {
		/*
		 * If the merge is highly unbalanced (e.g. the input is
		 * already sorted), this loop may run many iterations.
		 * Continue callbacks to the client even though no
		 * element comparison is needed, so the client's cmp()
		 * routine can invoke cond_resched() periodically.
		 */
		if (unlikely(!++count))
			cmp(priv, b, b);
		b->prev = tail;
		tail = b;
		b = b->next;
	} while (b);

	/* And the final links to make a circular doubly-linked list */
	tail->next = head;
	head->prev = tail;
}

/**
 * list_sort - sort a list
 * @priv: private data, opaque to list_sort(), passed to @cmp
 * @head: the list to sort
 * @cmp: the elements comparison function
 *
 * The comparison funtion @cmp must return > 0 if @a should sort after
 * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should
 * sort before @b *or* their original order should be preserved.  It is
 * always called with the element that came first in the input in @a,
 * and list_sort is a stable sort, so it is not necessary to distinguish
 * the @a < @b and @a == @b cases.
 *
 * This is compatible with two styles of @cmp function:
 * - The traditional style which returns <0 / =0 / >0, or
 * - Returning a boolean 0/1.
 * The latter offers a chance to save a few cycles in the comparison
 * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c).
 *
 * A good way to write a multi-word comparison is::
 *
 *	if (a->high != b->high)
 *		return a->high > b->high;
 *	if (a->middle != b->middle)
 *		return a->middle > b->middle;
 *	return a->low > b->low;
 *
 *
 * This mergesort is as eager as possible while always performing at least
 * 2:1 balanced merges.  Given two pending sublists of size 2^k, they are
 * merged to a size-2^(k+1) list as soon as we have 2^k following elements.
 *
 * Thus, it will avoid cache thrashing as long as 3*2^k elements can
 * fit into the cache.  Not quite as good as a fully-eager bottom-up
 * mergesort, but it does use 0.2*n fewer comparisons, so is faster in
 * the common case that everything fits into L1.
 *
 *
 * The merging is controlled by "count", the number of elements in the
 * pending lists.  This is beautiully simple code, but rather subtle.
 *
 * Each time we increment "count", we set one bit (bit k) and clear
 * bits k-1 .. 0.  Each time this happens (except the very first time
 * for each bit, when count increments to 2^k), we merge two lists of
 * size 2^k into one list of size 2^(k+1).
 *
 * This merge happens exactly when the count reaches an odd multiple of
 * 2^k, which is when we have 2^k elements pending in smaller lists,
 * so it's safe to merge away two lists of size 2^k.
 *
 * After this happens twice, we have created two lists of size 2^(k+1),
 * which will be merged into a list of size 2^(k+2) before we create
 * a third list of size 2^(k+1), so there are never more than two pending.
 *
 * The number of pending lists of size 2^k is determined by the
 * state of bit k of "count" plus two extra pieces of information:
 *
 * - The state of bit k-1 (when k == 0, consider bit -1 always set), and
 * - Whether the higher-order bits are zero or non-zero (i.e.
 *   is count >= 2^(k+1)).
 *
 * There are six states we distinguish.  "x" represents some arbitrary
 * bits, and "y" represents some arbitrary non-zero bits:
 * 0:  00x: 0 pending of size 2^k;           x pending of sizes < 2^k
 * 1:  01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
 * 2: x10x: 0 pending of size 2^k; 2^k     + x pending of sizes < 2^k
 * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
 * 4: y00x: 1 pending of size 2^k; 2^k     + x pending of sizes < 2^k
 * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
 * (merge and loop back to state 2)
 *
 * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because
 * bit k-1 is set while the more significant bits are non-zero) and
 * merge them away in the 5->2 transition.  Note in particular that just
 * before the 5->2 transition, all lower-order bits are 11 (state 3),
 * so there is one list of each smaller size.
 *
 * When we reach the end of the input, we merge all the pending
 * lists, from smallest to largest.  If you work through cases 2 to
 * 5 above, you can see that the number of elements we merge with a list
 * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to
 * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).
 */
__attribute__((nonnull(2,3)))
void list_sort(void *priv, struct list_head *head,
		int (*cmp)(void *priv, struct list_head *a,
			struct list_head *b))
{
	struct list_head *list = head->next, *pending = NULL;
	size_t count = 0;	/* Count of pending */

	if (list == head->prev)	/* Zero or one elements */
		return;

	/* Convert to a null-terminated singly-linked list. */
	head->prev->next = NULL;

	/*
	 * Data structure invariants:
	 * - All lists are singly linked and null-terminated; prev
	 *   pointers are not maintained.
	 * - pending is a prev-linked "list of lists" of sorted
	 *   sublists awaiting further merging.
	 * - Each of the sorted sublists is power-of-two in size.
	 * - Sublists are sorted by size and age, smallest & newest at front.
	 * - There are zero to two sublists of each size.
	 * - A pair of pending sublists are merged as soon as the number
	 *   of following pending elements equals their size (i.e.
	 *   each time count reaches an odd multiple of that size).
	 *   That ensures each later final merge will be at worst 2:1.
	 * - Each round consists of:
	 *   - Merging the two sublists selected by the highest bit
	 *     which flips when count is incremented, and
	 *   - Adding an element from the input as a size-1 sublist.
	 */
	do {
		size_t bits;
		struct list_head **tail = &pending;

		/* Find the least-significant clear bit in count */
		for (bits = count; bits & 1; bits >>= 1)
			tail = &(*tail)->prev;
		/* Do the indicated merge */
		if (likely(bits)) {
			struct list_head *a = *tail, *b = a->prev;

			a = merge(priv, (cmp_func)cmp, b, a);
			/* Install the merged result in place of the inputs */
			a->prev = b->prev;
			*tail = a;
		}

		/* Move one element from input list to pending */
		list->prev = pending;
		pending = list;
		list = list->next;
		pending->next = NULL;
		count++;
	} while (list);

	/* End of input; merge together all the pending lists. */
	list = pending;
	pending = pending->prev;
	for (;;) {
		struct list_head *next = pending->prev;

		if (!next)
			break;
		list = merge(priv, (cmp_func)cmp, pending, list);
		pending = next;
	}
	/* The final merge, rebuilding prev links */
	merge_final(priv, (cmp_func)cmp, head, pending, list);
}
EXPORT_SYMBOL(list_sort);
back to top