Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 81a0bf97e2012c369f800f26e2e3d3651cde7a35 authored by Matthias J. Kannwischer on 29 July 2021, 07:22:18 UTC, committed by Matthias J. Kannwischer on 02 August 2021, 03:06:46 UTC
Update NTRU Prime; add new round 3 parameter sets
1 parent 819f906
  • Files
  • Changes
  • b53fadd
  • /
  • crypto_sign
  • /
  • dilithium5aes
  • /
  • clean
  • /
  • aes256ctr.c
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:81a0bf97e2012c369f800f26e2e3d3651cde7a35
directory badge Iframe embedding
swh:1:dir:68e636f4ca7406ca141870ab906c5fbdb76ca720
content badge Iframe embedding
swh:1:cnt:445ef4fc6b62e1266ca37aadbdf768f39421b234
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
aes256ctr.c
#include "aes256ctr.h"
#include <stdint.h>
#include <string.h>
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */


static inline uint32_t br_dec32le(const uint8_t *src) {
    return (uint32_t)src[0]
           | ((uint32_t)src[1] << 8)
           | ((uint32_t)src[2] << 16)
           | ((uint32_t)src[3] << 24);
}

static void br_range_dec32le(uint32_t *v, size_t num, const uint8_t *src) {
    while (num-- > 0) {
        *v ++ = br_dec32le(src);
        src += 4;
    }
}

static inline uint32_t br_swap32(uint32_t x) {
    x = ((x & (uint32_t)0x00FF00FF) << 8)
        | ((x >> 8) & (uint32_t)0x00FF00FF);
    return (x << 16) | (x >> 16);
}

static inline void br_enc32le(uint8_t *dst, uint32_t x) {
    dst[0] = (uint8_t)x;
    dst[1] = (uint8_t)(x >> 8);
    dst[2] = (uint8_t)(x >> 16);
    dst[3] = (uint8_t)(x >> 24);
}

static void br_range_enc32le(uint8_t *dst, const uint32_t *v, size_t num) {
    while (num-- > 0) {
        br_enc32le(dst, *v ++);
        dst += 4;
    }
}

static void br_aes_ct64_bitslice_Sbox(uint64_t *q) {
    /*
     * This S-box implementation is a straightforward translation of
     * the circuit described by Boyar and Peralta in "A new
     * combinational logic minimization technique with applications
     * to cryptology" (https://eprint.iacr.org/2009/191.pdf).
     *
     * Note that variables x* (input) and s* (output) are numbered
     * in "reverse" order (x0 is the high bit, x7 is the low bit).
     */

    uint64_t x0, x1, x2, x3, x4, x5, x6, x7;
    uint64_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
    uint64_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
    uint64_t y20, y21;
    uint64_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
    uint64_t z10, z11, z12, z13, z14, z15, z16, z17;
    uint64_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
    uint64_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
    uint64_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
    uint64_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
    uint64_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
    uint64_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
    uint64_t t60, t61, t62, t63, t64, t65, t66, t67;
    uint64_t s0, s1, s2, s3, s4, s5, s6, s7;

    x0 = q[7];
    x1 = q[6];
    x2 = q[5];
    x3 = q[4];
    x4 = q[3];
    x5 = q[2];
    x6 = q[1];
    x7 = q[0];

    /*
     * Top linear transformation.
     */
    y14 = x3 ^ x5;
    y13 = x0 ^ x6;
    y9 = x0 ^ x3;
    y8 = x0 ^ x5;
    t0 = x1 ^ x2;
    y1 = t0 ^ x7;
    y4 = y1 ^ x3;
    y12 = y13 ^ y14;
    y2 = y1 ^ x0;
    y5 = y1 ^ x6;
    y3 = y5 ^ y8;
    t1 = x4 ^ y12;
    y15 = t1 ^ x5;
    y20 = t1 ^ x1;
    y6 = y15 ^ x7;
    y10 = y15 ^ t0;
    y11 = y20 ^ y9;
    y7 = x7 ^ y11;
    y17 = y10 ^ y11;
    y19 = y10 ^ y8;
    y16 = t0 ^ y11;
    y21 = y13 ^ y16;
    y18 = x0 ^ y16;

    /*
     * Non-linear section.
     */
    t2 = y12 & y15;
    t3 = y3 & y6;
    t4 = t3 ^ t2;
    t5 = y4 & x7;
    t6 = t5 ^ t2;
    t7 = y13 & y16;
    t8 = y5 & y1;
    t9 = t8 ^ t7;
    t10 = y2 & y7;
    t11 = t10 ^ t7;
    t12 = y9 & y11;
    t13 = y14 & y17;
    t14 = t13 ^ t12;
    t15 = y8 & y10;
    t16 = t15 ^ t12;
    t17 = t4 ^ t14;
    t18 = t6 ^ t16;
    t19 = t9 ^ t14;
    t20 = t11 ^ t16;
    t21 = t17 ^ y20;
    t22 = t18 ^ y19;
    t23 = t19 ^ y21;
    t24 = t20 ^ y18;

    t25 = t21 ^ t22;
    t26 = t21 & t23;
    t27 = t24 ^ t26;
    t28 = t25 & t27;
    t29 = t28 ^ t22;
    t30 = t23 ^ t24;
    t31 = t22 ^ t26;
    t32 = t31 & t30;
    t33 = t32 ^ t24;
    t34 = t23 ^ t33;
    t35 = t27 ^ t33;
    t36 = t24 & t35;
    t37 = t36 ^ t34;
    t38 = t27 ^ t36;
    t39 = t29 & t38;
    t40 = t25 ^ t39;

    t41 = t40 ^ t37;
    t42 = t29 ^ t33;
    t43 = t29 ^ t40;
    t44 = t33 ^ t37;
    t45 = t42 ^ t41;
    z0 = t44 & y15;
    z1 = t37 & y6;
    z2 = t33 & x7;
    z3 = t43 & y16;
    z4 = t40 & y1;
    z5 = t29 & y7;
    z6 = t42 & y11;
    z7 = t45 & y17;
    z8 = t41 & y10;
    z9 = t44 & y12;
    z10 = t37 & y3;
    z11 = t33 & y4;
    z12 = t43 & y13;
    z13 = t40 & y5;
    z14 = t29 & y2;
    z15 = t42 & y9;
    z16 = t45 & y14;
    z17 = t41 & y8;

    /*
     * Bottom linear transformation.
     */
    t46 = z15 ^ z16;
    t47 = z10 ^ z11;
    t48 = z5 ^ z13;
    t49 = z9 ^ z10;
    t50 = z2 ^ z12;
    t51 = z2 ^ z5;
    t52 = z7 ^ z8;
    t53 = z0 ^ z3;
    t54 = z6 ^ z7;
    t55 = z16 ^ z17;
    t56 = z12 ^ t48;
    t57 = t50 ^ t53;
    t58 = z4 ^ t46;
    t59 = z3 ^ t54;
    t60 = t46 ^ t57;
    t61 = z14 ^ t57;
    t62 = t52 ^ t58;
    t63 = t49 ^ t58;
    t64 = z4 ^ t59;
    t65 = t61 ^ t62;
    t66 = z1 ^ t63;
    s0 = t59 ^ t63;
    s6 = t56 ^ ~t62;
    s7 = t48 ^ ~t60;
    t67 = t64 ^ t65;
    s3 = t53 ^ t66;
    s4 = t51 ^ t66;
    s5 = t47 ^ t65;
    s1 = t64 ^ ~s3;
    s2 = t55 ^ ~t67;

    q[7] = s0;
    q[6] = s1;
    q[5] = s2;
    q[4] = s3;
    q[3] = s4;
    q[2] = s5;
    q[1] = s6;
    q[0] = s7;
}

static void br_aes_ct64_ortho(uint64_t *q) {
#define SWAPN(cl, ch, s, x, y)   do { \
        uint64_t a, b; \
        a = (x); \
        b = (y); \
        (x) = (a & (uint64_t)(cl)) | ((b & (uint64_t)(cl)) << (s)); \
        (y) = ((a & (uint64_t)(ch)) >> (s)) | (b & (uint64_t)(ch)); \
    } while (0)

#define SWAP2(x, y)    SWAPN(0x5555555555555555, 0xAAAAAAAAAAAAAAAA,  1, x, y)
#define SWAP4(x, y)    SWAPN(0x3333333333333333, 0xCCCCCCCCCCCCCCCC,  2, x, y)
#define SWAP8(x, y)    SWAPN(0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0,  4, x, y)

    SWAP2(q[0], q[1]);
    SWAP2(q[2], q[3]);
    SWAP2(q[4], q[5]);
    SWAP2(q[6], q[7]);

    SWAP4(q[0], q[2]);
    SWAP4(q[1], q[3]);
    SWAP4(q[4], q[6]);
    SWAP4(q[5], q[7]);

    SWAP8(q[0], q[4]);
    SWAP8(q[1], q[5]);
    SWAP8(q[2], q[6]);
    SWAP8(q[3], q[7]);
}

static void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w) {
    uint64_t x0, x1, x2, x3;

    x0 = w[0];
    x1 = w[1];
    x2 = w[2];
    x3 = w[3];
    x0 |= (x0 << 16);
    x1 |= (x1 << 16);
    x2 |= (x2 << 16);
    x3 |= (x3 << 16);
    x0 &= (uint64_t)0x0000FFFF0000FFFF;
    x1 &= (uint64_t)0x0000FFFF0000FFFF;
    x2 &= (uint64_t)0x0000FFFF0000FFFF;
    x3 &= (uint64_t)0x0000FFFF0000FFFF;
    x0 |= (x0 << 8);
    x1 |= (x1 << 8);
    x2 |= (x2 << 8);
    x3 |= (x3 << 8);
    x0 &= (uint64_t)0x00FF00FF00FF00FF;
    x1 &= (uint64_t)0x00FF00FF00FF00FF;
    x2 &= (uint64_t)0x00FF00FF00FF00FF;
    x3 &= (uint64_t)0x00FF00FF00FF00FF;
    *q0 = x0 | (x2 << 8);
    *q1 = x1 | (x3 << 8);
}

static void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1) {
    uint64_t x0, x1, x2, x3;

    x0 = q0 & (uint64_t)0x00FF00FF00FF00FF;
    x1 = q1 & (uint64_t)0x00FF00FF00FF00FF;
    x2 = (q0 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
    x3 = (q1 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
    x0 |= (x0 >> 8);
    x1 |= (x1 >> 8);
    x2 |= (x2 >> 8);
    x3 |= (x3 >> 8);
    x0 &= (uint64_t)0x0000FFFF0000FFFF;
    x1 &= (uint64_t)0x0000FFFF0000FFFF;
    x2 &= (uint64_t)0x0000FFFF0000FFFF;
    x3 &= (uint64_t)0x0000FFFF0000FFFF;
    w[0] = (uint32_t)x0 | (uint32_t)(x0 >> 16);
    w[1] = (uint32_t)x1 | (uint32_t)(x1 >> 16);
    w[2] = (uint32_t)x2 | (uint32_t)(x2 >> 16);
    w[3] = (uint32_t)x3 | (uint32_t)(x3 >> 16);
}

static const uint8_t Rcon[] = {
    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
};

static uint32_t sub_word(uint32_t x) {
    uint64_t q[8];

    memset(q, 0, sizeof q);
    q[0] = x;
    br_aes_ct64_ortho(q);
    br_aes_ct64_bitslice_Sbox(q);
    br_aes_ct64_ortho(q);
    return (uint32_t)q[0];
}

static void br_aes_ct64_keysched(uint64_t *comp_skey, const uint8_t *key) {
    int i, j, k, nk, nkf;
    uint32_t tmp;
    uint32_t skey[60];

    int key_len = 32;

    nk = (int)(key_len >> 2);
    nkf = (int)((14 + 1) << 2);
    br_range_dec32le(skey, (key_len >> 2), key);
    tmp = skey[(key_len >> 2) - 1];
    for (i = nk, j = 0, k = 0; i < nkf; i ++) {
        if (j == 0) {
            tmp = (tmp << 24) | (tmp >> 8);
            tmp = sub_word(tmp) ^ Rcon[k];
        } else if (nk > 6 && j == 4) {
            tmp = sub_word(tmp);
        }
        tmp ^= skey[i - nk];
        skey[i] = tmp;
        if (++ j == nk) {
            j = 0;
            k ++;
        }
    }

    for (i = 0, j = 0; i < nkf; i += 4, j += 2) {
        uint64_t q[8];

        br_aes_ct64_interleave_in(&q[0], &q[4], skey + i);
        q[1] = q[0];
        q[2] = q[0];
        q[3] = q[0];
        q[5] = q[4];
        q[6] = q[4];
        q[7] = q[4];
        br_aes_ct64_ortho(q);
        comp_skey[j + 0] =
            (q[0] & (uint64_t)0x1111111111111111)
            | (q[1] & (uint64_t)0x2222222222222222)
            | (q[2] & (uint64_t)0x4444444444444444)
            | (q[3] & (uint64_t)0x8888888888888888);
        comp_skey[j + 1] =
            (q[4] & (uint64_t)0x1111111111111111)
            | (q[5] & (uint64_t)0x2222222222222222)
            | (q[6] & (uint64_t)0x4444444444444444)
            | (q[7] & (uint64_t)0x8888888888888888);
    }
}

static void br_aes_ct64_skey_expand(uint64_t *skey, const uint64_t *comp_skey) {
    unsigned u, v, n;

    n = (14 + 1) << 1;
    for (u = 0, v = 0; u < n; u ++, v += 4) {
        uint64_t x0, x1, x2, x3;

        x0 = x1 = x2 = x3 = comp_skey[u];
        x0 &= (uint64_t)0x1111111111111111;
        x1 &= (uint64_t)0x2222222222222222;
        x2 &= (uint64_t)0x4444444444444444;
        x3 &= (uint64_t)0x8888888888888888;
        x1 >>= 1;
        x2 >>= 2;
        x3 >>= 3;
        skey[v + 0] = (x0 << 4) - x0;
        skey[v + 1] = (x1 << 4) - x1;
        skey[v + 2] = (x2 << 4) - x2;
        skey[v + 3] = (x3 << 4) - x3;
    }
}

static inline void add_round_key(uint64_t *q, const uint64_t *sk) {
    q[0] ^= sk[0];
    q[1] ^= sk[1];
    q[2] ^= sk[2];
    q[3] ^= sk[3];
    q[4] ^= sk[4];
    q[5] ^= sk[5];
    q[6] ^= sk[6];
    q[7] ^= sk[7];
}

static inline void shift_rows(uint64_t *q) {
    int i;

    for (i = 0; i < 8; i ++) {
        uint64_t x;

        x = q[i];
        q[i] = (x & (uint64_t)0x000000000000FFFF)
               | ((x & (uint64_t)0x00000000FFF00000) >> 4)
               | ((x & (uint64_t)0x00000000000F0000) << 12)
               | ((x & (uint64_t)0x0000FF0000000000) >> 8)
               | ((x & (uint64_t)0x000000FF00000000) << 8)
               | ((x & (uint64_t)0xF000000000000000) >> 12)
               | ((x & (uint64_t)0x0FFF000000000000) << 4);
    }
}

static inline uint64_t rotr32(uint64_t x) {
    return (x << 32) | (x >> 32);
}

static inline void mix_columns(uint64_t *q) {
    uint64_t q0, q1, q2, q3, q4, q5, q6, q7;
    uint64_t r0, r1, r2, r3, r4, r5, r6, r7;

    q0 = q[0];
    q1 = q[1];
    q2 = q[2];
    q3 = q[3];
    q4 = q[4];
    q5 = q[5];
    q6 = q[6];
    q7 = q[7];
    r0 = (q0 >> 16) | (q0 << 48);
    r1 = (q1 >> 16) | (q1 << 48);
    r2 = (q2 >> 16) | (q2 << 48);
    r3 = (q3 >> 16) | (q3 << 48);
    r4 = (q4 >> 16) | (q4 << 48);
    r5 = (q5 >> 16) | (q5 << 48);
    r6 = (q6 >> 16) | (q6 << 48);
    r7 = (q7 >> 16) | (q7 << 48);

    q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0);
    q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1);
    q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2);
    q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3);
    q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4);
    q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5);
    q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6);
    q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7);
}

static void inc4_be(uint32_t *x) {
    *x = br_swap32(*x) + 4;
    *x = br_swap32(*x);
}

static void aes_ctr4x(uint8_t out[64], uint32_t ivw[16], uint64_t sk_exp[64]) {
    uint32_t w[16];
    uint64_t q[8];
    int i;

    memcpy(w, ivw, sizeof(w));
    for (i = 0; i < 4; i++) {
        br_aes_ct64_interleave_in(&q[i], &q[i + 4], w + (i << 2));
    }
    br_aes_ct64_ortho(q);

    add_round_key(q, sk_exp);
    for (i = 1; i < 14; i++) {
        br_aes_ct64_bitslice_Sbox(q);
        shift_rows(q);
        mix_columns(q);
        add_round_key(q, sk_exp + (i << 3));
    }
    br_aes_ct64_bitslice_Sbox(q);
    shift_rows(q);
    add_round_key(q, sk_exp + 112);

    br_aes_ct64_ortho(q);
    for (i = 0; i < 4; i ++) {
        br_aes_ct64_interleave_out(w + (i << 2), q[i], q[i + 4]);
    }
    br_range_enc32le(out, w, 16);

    /* Increase counter for next 4 blocks */
    inc4_be(ivw + 3);
    inc4_be(ivw + 7);
    inc4_be(ivw + 11);
    inc4_be(ivw + 15);
}

static void br_aes_ct64_ctr_init(uint64_t sk_exp[120], const uint8_t *key) {
    uint64_t skey[30];

    br_aes_ct64_keysched(skey, key);
    br_aes_ct64_skey_expand(sk_exp, skey);
}

static void br_aes_ct64_ctr_run(uint64_t sk_exp[120], const uint8_t *iv, uint32_t cc, uint8_t *data, size_t len) {
    uint32_t ivw[16];
    size_t i;

    br_range_dec32le(ivw, 3, iv);
    memcpy(ivw +  4, ivw, 3 * sizeof(uint32_t));
    memcpy(ivw +  8, ivw, 3 * sizeof(uint32_t));
    memcpy(ivw + 12, ivw, 3 * sizeof(uint32_t));
    ivw[ 3] = br_swap32(cc);
    ivw[ 7] = br_swap32(cc + 1);
    ivw[11] = br_swap32(cc + 2);
    ivw[15] = br_swap32(cc + 3);

    while (len > 64) {
        aes_ctr4x(data, ivw, sk_exp);
        data += 64;
        len -= 64;
    }
    if (len > 0) {
        uint8_t tmp[64];
        aes_ctr4x(tmp, ivw, sk_exp);
        for (i = 0; i < len; i++) {
            data[i] = tmp[i];
        }
    }
}

void PQCLEAN_DILITHIUM5AES_CLEAN_aes256ctr_prf(uint8_t *out, size_t outlen, const uint8_t *key, const uint8_t *nonce) {
    uint64_t sk_exp[120];

    br_aes_ct64_ctr_init(sk_exp, key);
    br_aes_ct64_ctr_run(sk_exp, nonce, 0, out, outlen);
}

void PQCLEAN_DILITHIUM5AES_CLEAN_aes256ctr_init(aes256ctr_ctx *s, const uint8_t *key, const uint8_t *nonce) {
    br_aes_ct64_ctr_init(s->sk_exp, key);

    br_range_dec32le(s->ivw, 3, nonce);
    memcpy(s->ivw +  4, s->ivw, 3 * sizeof(uint32_t));
    memcpy(s->ivw +  8, s->ivw, 3 * sizeof(uint32_t));
    memcpy(s->ivw + 12, s->ivw, 3 * sizeof(uint32_t));
    s->ivw[ 3] = br_swap32(0);
    s->ivw[ 7] = br_swap32(1);
    s->ivw[11] = br_swap32(2);
    s->ivw[15] = br_swap32(3);
}

void PQCLEAN_DILITHIUM5AES_CLEAN_aes256ctr_squeezeblocks(uint8_t *out, size_t nblocks, aes256ctr_ctx *s) {
    while (nblocks > 0) {
        aes_ctr4x(out, s->ivw, s->sk_exp);
        out += 64;
        nblocks--;
    }
}
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API