Revision 82336685cac5e71092d592f083f44f61a0ebde34 authored by Eh Tan on 23 August 2007, 20:16:10 UTC, committed by Eh Tan on 23 August 2007, 20:16:10 UTC
When it is on (default), if the max temperature changes too much between timestep,
the temperature field is restored at the tsolver is called using half of the
timestep size.

1 parent 447f924
Raw File
Citcom.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <mpi.h>

#include <math.h>
#include <sys/types.h>

#include "element_definitions.h"
#include "global_defs.h"
#include "citcom_init.h"
#include "output.h"
#include "parallel_related.h"
#include "checkpoints.h"

extern int Emergency_stop;

void solver_init(struct All_variables *E);

int main(argc,argv)
     int argc;
     char **argv;

{	/* Functions called by main*/
  void general_stokes_solver();
  void general_stokes_solver_pseudo_surf();
  void read_instructions();
  void initial_setup();
  void initial_conditions();
  void solve_constrained_flow();
  void solve_derived_velocities();
  void process_temp_field();
  void post_processing();
  void vcopy();
  void construct_mat_group();
  void read_velocity_boundary_from_file();
  void read_mat_from_file();
  void open_time();
  void output_finalize();
  void PG_timestep_init();
  void tracer_advection();

  float dot();
  float cpu_time_on_vp_it;

  int cpu_total_seconds,k, *temp;
  double CPU_time0(),time,initial_time,start_time,avaimem();

  struct All_variables *E;
  MPI_Comm world;

  MPI_Init(&argc,&argv); /* added here to allow command-line input */

  if (argc < 2)   {
    fprintf(stderr,"Usage: %s PARAMETERFILE\n", argv[0]);
    parallel_process_termination();
  }

  world = MPI_COMM_WORLD;
  E = citcom_init(&world);             /* allocate global E and do initializaion here */

  solver_init(E);

  start_time = time = CPU_time0();
  read_instructions(E, argv[1]);
  initial_setup(E);

  cpu_time_on_vp_it = CPU_time0();
  initial_time = cpu_time_on_vp_it - time;
  if (E->parallel.me == 0)  {
    fprintf(stderr,"Input parameters taken from file '%s'\n",argv[1]);
    fprintf(stderr,"Initialization complete after %g seconds\n\n",initial_time);
    fprintf(E->fp,"Initialization complete after %g seconds\n\n",initial_time);
    fflush(E->fp);
  }

  /* This if-block is replaced by CitcomS.Solver.launch()*/
  if (E->control.restart || E->control.post_p) {
      read_checkpoint(E);

      if (E->control.post_p) {
          post_processing(E);
          parallel_process_termination();
      }
  }
  else {
      initial_conditions(E);

      if(E->control.pseudo_free_surf) {
          if(E->mesh.topvbc == 2)
              general_stokes_solver_pseudo_surf(E);
          else
              assert(0);
      }
      else
          general_stokes_solver(E);
  }

  (E->problem_output)(E, E->monitor.solution_cycles);

  /* information about simulation time and wall clock time */
  output_time(E, E->monitor.solution_cycles);


  if (E->control.stokes)  {

    if(E->control.tracer==1)
      tracer_advection(E);

    parallel_process_termination();
  }

  while ( E->control.keep_going   &&  (Emergency_stop == 0) )   {

    /* The next few lines of code were replaced by
     * pyCitcom_PG_timestep_solve() in Pyre version.
     * If you modify here, make sure its Pyre counterpart
     * is modified as well */
    E->monitor.solution_cycles++;
    if(E->monitor.solution_cycles>E->control.print_convergence)
      E->control.print_convergence=1;

    (E->next_buoyancy_field)(E);
    /* */


    if(((E->advection.total_timesteps < E->advection.max_total_timesteps) &&
	(E->advection.timesteps < E->advection.max_timesteps)) ||
       (E->advection.total_timesteps < E->advection.min_timesteps) )
      E->control.keep_going = 1;
    else
      E->control.keep_going = 0;

    cpu_total_seconds = CPU_time0()-start_time;
    if (cpu_total_seconds > E->control.record_all_until)  {
      E->control.keep_going = 0;
    }

    if (E->monitor.T_interior>1.5)  {
      fprintf(E->fp,"quit due to maxT = %.4e sub_iteration%d\n",E->monitor.T_interior,E->advection.last_sub_iterations);
      parallel_process_termination();
    }

    if(E->control.tracer==1)
      tracer_advection(E);

    general_stokes_solver(E);

    if ((E->monitor.solution_cycles % E->control.record_every)==0) {
	(E->problem_output)(E, E->monitor.solution_cycles);
    }

    /* information about simulation time and wall clock time */
    output_time(E, E->monitor.solution_cycles);

    if ((E->monitor.solution_cycles % E->control.checkpoint_frequency)==0) {
	output_checkpoint(E);
    }

    if(E->control.mat_control==1)
      read_mat_from_file(E);
    /*
      else
      construct_mat_group(E);
    */

    if(E->control.vbcs_file==1)
      read_velocity_boundary_from_file(E);
    /*
      else
      renew_top_velocity_boundary(E);
    */



    if (E->parallel.me == 0)  {
      fprintf(E->fp,"CPU total = %g & CPU = %g for step %d time = %.4e dt = %.4e  maxT = %.4e sub_iteration%d\n",CPU_time0()-start_time,CPU_time0()-time,E->monitor.solution_cycles,E->monitor.elapsed_time,E->advection.timestep,E->monitor.T_interior,E->advection.last_sub_iterations);

      time = CPU_time0();
    }

  }




  if (E->parallel.me == 0)  {
    fprintf(stderr,"cycles=%d\n",E->monitor.solution_cycles);
    cpu_time_on_vp_it=CPU_time0()-cpu_time_on_vp_it;
    fprintf(stderr,"Average cpu time taken for velocity step = %f\n",
	    cpu_time_on_vp_it/((float)(E->monitor.solution_cycles-E->control.restart)));
    fprintf(E->fp,"Initialization overhead = %f\n",initial_time);
    fprintf(E->fp,"Average cpu time taken for velocity step = %f\n",
	    cpu_time_on_vp_it/((float)(E->monitor.solution_cycles-E->control.restart)));
  }

  output_finalize(E);
  parallel_process_termination();

  return(0);

}
back to top