Revision 8705ed2f725b4d2bcc1c2474a906c9ade0dfa28f authored by Arnd Bergmann on 28 June 2020, 12:44:39 UTC, committed by Arnd Bergmann on 28 June 2020, 12:44:41 UTC
Missed sdhci patch for am3 and am4

I forgot to send a pull request earlier for converting am3 and am4 to
use sdhci-omap driver instead of the old omap_hsmmc driver.

There was a display subsystem related suspend and resume regression found
recently and looks like I forgot to send a pull request for this patch
while debugging the regression. This patch has been tested without the
display subsystem, and has been in Linux next for several weeks now, so
would be good to have merged for v5.8.

* tag 'omap-for-v5.8/dt-missed-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap:
  ARM: dts: Move am33xx and am43xx mmc nodes to sdhci-omap driver

Link: https://lore.kernel.org/r/pull-1591637467-607254@atomide.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2 parent s 5b75f16 + 0b4edf1
Raw File
tkip.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2002-2004, Instant802 Networks, Inc.
 * Copyright 2005, Devicescape Software, Inc.
 * Copyright (C) 2016 Intel Deutschland GmbH
 */
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <asm/unaligned.h>

#include <net/mac80211.h>
#include "driver-ops.h"
#include "key.h"
#include "tkip.h"
#include "wep.h"

#define PHASE1_LOOP_COUNT 8

/*
 * 2-byte by 2-byte subset of the full AES S-box table; second part of this
 * table is identical to first part but byte-swapped
 */
static const u16 tkip_sbox[256] =
{
	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};

static u16 tkipS(u16 val)
{
	return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
}

static u8 *write_tkip_iv(u8 *pos, u16 iv16)
{
	*pos++ = iv16 >> 8;
	*pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
	*pos++ = iv16 & 0xFF;
	return pos;
}

/*
 * P1K := Phase1(TA, TK, TSC)
 * TA = transmitter address (48 bits)
 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
 * P1K: 80 bits
 */
static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx,
			       const u8 *ta, u32 tsc_IV32)
{
	int i, j;
	u16 *p1k = ctx->p1k;

	p1k[0] = tsc_IV32 & 0xFFFF;
	p1k[1] = tsc_IV32 >> 16;
	p1k[2] = get_unaligned_le16(ta + 0);
	p1k[3] = get_unaligned_le16(ta + 2);
	p1k[4] = get_unaligned_le16(ta + 4);

	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
		j = 2 * (i & 1);
		p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
		p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
		p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
		p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
		p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
	}
	ctx->state = TKIP_STATE_PHASE1_DONE;
	ctx->p1k_iv32 = tsc_IV32;
}

static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx,
			       u16 tsc_IV16, u8 *rc4key)
{
	u16 ppk[6];
	const u16 *p1k = ctx->p1k;
	int i;

	ppk[0] = p1k[0];
	ppk[1] = p1k[1];
	ppk[2] = p1k[2];
	ppk[3] = p1k[3];
	ppk[4] = p1k[4];
	ppk[5] = p1k[4] + tsc_IV16;

	ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
	ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
	ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
	ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
	ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
	ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
	ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
	ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
	ppk[2] += ror16(ppk[1], 1);
	ppk[3] += ror16(ppk[2], 1);
	ppk[4] += ror16(ppk[3], 1);
	ppk[5] += ror16(ppk[4], 1);

	rc4key = write_tkip_iv(rc4key, tsc_IV16);
	*rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;

	for (i = 0; i < 6; i++)
		put_unaligned_le16(ppk[i], rc4key + 2 * i);
}

/* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
 * the packet payload). */
u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key_conf *keyconf, u64 pn)
{
	pos = write_tkip_iv(pos, TKIP_PN_TO_IV16(pn));
	*pos++ = (keyconf->keyidx << 6) | (1 << 5) /* Ext IV */;
	put_unaligned_le32(TKIP_PN_TO_IV32(pn), pos);
	return pos + 4;
}
EXPORT_SYMBOL_GPL(ieee80211_tkip_add_iv);

static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32)
{
	struct ieee80211_sub_if_data *sdata = key->sdata;
	struct tkip_ctx *ctx = &key->u.tkip.tx;
	const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];

	lockdep_assert_held(&key->u.tkip.txlock);

	/*
	 * Update the P1K when the IV32 is different from the value it
	 * had when we last computed it (or when not initialised yet).
	 * This might flip-flop back and forth if packets are processed
	 * out-of-order due to the different ACs, but then we have to
	 * just compute the P1K more often.
	 */
	if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT)
		tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32);
}

void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
			       u32 iv32, u16 *p1k)
{
	struct ieee80211_key *key = (struct ieee80211_key *)
			container_of(keyconf, struct ieee80211_key, conf);
	struct tkip_ctx *ctx = &key->u.tkip.tx;

	spin_lock_bh(&key->u.tkip.txlock);
	ieee80211_compute_tkip_p1k(key, iv32);
	memcpy(p1k, ctx->p1k, sizeof(ctx->p1k));
	spin_unlock_bh(&key->u.tkip.txlock);
}
EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv);

void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
			       const u8 *ta, u32 iv32, u16 *p1k)
{
	const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
	struct tkip_ctx ctx;

	tkip_mixing_phase1(tk, &ctx, ta, iv32);
	memcpy(p1k, ctx.p1k, sizeof(ctx.p1k));
}
EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k);

void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
			    struct sk_buff *skb, u8 *p2k)
{
	struct ieee80211_key *key = (struct ieee80211_key *)
			container_of(keyconf, struct ieee80211_key, conf);
	const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
	struct tkip_ctx *ctx = &key->u.tkip.tx;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
	u32 iv32 = get_unaligned_le32(&data[4]);
	u16 iv16 = data[2] | (data[0] << 8);

	spin_lock(&key->u.tkip.txlock);
	ieee80211_compute_tkip_p1k(key, iv32);
	tkip_mixing_phase2(tk, ctx, iv16, p2k);
	spin_unlock(&key->u.tkip.txlock);
}
EXPORT_SYMBOL(ieee80211_get_tkip_p2k);

/*
 * Encrypt packet payload with TKIP using @key. @pos is a pointer to the
 * beginning of the buffer containing payload. This payload must include
 * the IV/Ext.IV and space for (taildroom) four octets for ICV.
 * @payload_len is the length of payload (_not_ including IV/ICV length).
 * @ta is the transmitter addresses.
 */
int ieee80211_tkip_encrypt_data(struct arc4_ctx *ctx,
				struct ieee80211_key *key,
				struct sk_buff *skb,
				u8 *payload, size_t payload_len)
{
	u8 rc4key[16];

	ieee80211_get_tkip_p2k(&key->conf, skb, rc4key);

	return ieee80211_wep_encrypt_data(ctx, rc4key, 16,
					  payload, payload_len);
}

/* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
 * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
 * length of payload, including IV, Ext. IV, MIC, ICV.  */
int ieee80211_tkip_decrypt_data(struct arc4_ctx *ctx,
				struct ieee80211_key *key,
				u8 *payload, size_t payload_len, u8 *ta,
				u8 *ra, int only_iv, int queue,
				u32 *out_iv32, u16 *out_iv16)
{
	u32 iv32;
	u32 iv16;
	u8 rc4key[16], keyid, *pos = payload;
	int res;
	const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
	struct tkip_ctx_rx *rx_ctx = &key->u.tkip.rx[queue];

	if (payload_len < 12)
		return -1;

	iv16 = (pos[0] << 8) | pos[2];
	keyid = pos[3];
	iv32 = get_unaligned_le32(pos + 4);
	pos += 8;

	if (!(keyid & (1 << 5)))
		return TKIP_DECRYPT_NO_EXT_IV;

	if ((keyid >> 6) != key->conf.keyidx)
		return TKIP_DECRYPT_INVALID_KEYIDX;

	/* Reject replays if the received TSC is smaller than or equal to the
	 * last received value in a valid message, but with an exception for
	 * the case where a new key has been set and no valid frame using that
	 * key has yet received and the local RSC was initialized to 0. This
	 * exception allows the very first frame sent by the transmitter to be
	 * accepted even if that transmitter were to use TSC 0 (IEEE 802.11
	 * described TSC to be initialized to 1 whenever a new key is taken into
	 * use).
	 */
	if (iv32 < rx_ctx->iv32 ||
	    (iv32 == rx_ctx->iv32 &&
	     (iv16 < rx_ctx->iv16 ||
	      (iv16 == rx_ctx->iv16 &&
	       (rx_ctx->iv32 || rx_ctx->iv16 ||
		rx_ctx->ctx.state != TKIP_STATE_NOT_INIT)))))
		return TKIP_DECRYPT_REPLAY;

	if (only_iv) {
		res = TKIP_DECRYPT_OK;
		rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED;
		goto done;
	}

	if (rx_ctx->ctx.state == TKIP_STATE_NOT_INIT ||
	    rx_ctx->iv32 != iv32) {
		/* IV16 wrapped around - perform TKIP phase 1 */
		tkip_mixing_phase1(tk, &rx_ctx->ctx, ta, iv32);
	}
	if (key->local->ops->update_tkip_key &&
	    key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
	    rx_ctx->ctx.state != TKIP_STATE_PHASE1_HW_UPLOADED) {
		struct ieee80211_sub_if_data *sdata = key->sdata;

		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
			sdata = container_of(key->sdata->bss,
					struct ieee80211_sub_if_data, u.ap);
		drv_update_tkip_key(key->local, sdata, &key->conf, key->sta,
				iv32, rx_ctx->ctx.p1k);
		rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED;
	}

	tkip_mixing_phase2(tk, &rx_ctx->ctx, iv16, rc4key);

	res = ieee80211_wep_decrypt_data(ctx, rc4key, 16, pos, payload_len - 12);
 done:
	if (res == TKIP_DECRYPT_OK) {
		/*
		 * Record previously received IV, will be copied into the
		 * key information after MIC verification. It is possible
		 * that we don't catch replays of fragments but that's ok
		 * because the Michael MIC verication will then fail.
		 */
		*out_iv32 = iv32;
		*out_iv16 = iv16;
	}

	return res;
}
back to top