https://github.com/geodynamics/citcoms
Revision 8897df09fabc535ba88dcb7959d204477144cdb3 authored by Eh Tan on 14 June 2007, 22:58:05 UTC, committed by Eh Tan on 14 June 2007, 22:58:05 UTC
1 parent 8682d89
Raw File
Tip revision: 8897df09fabc535ba88dcb7959d204477144cdb3 authored by Eh Tan on 14 June 2007, 22:58:05 UTC
Update NEWS and configure.ac for v2.2.2 release
Tip revision: 8897df0
Process_buoyancy.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
/*  Here are the routines which process the results of each buoyancy solution, and call
    any relevant output routines. Much of the information has probably been output along
    with the velocity field. (So the velocity vectors and other data are fully in sync).
    However, heat fluxes and temperature averages are calculated here (even when they
    get output the next time around the velocity solver);
    */


#include "element_definitions.h"
#include "global_defs.h"



void post_processing(struct All_variables *E)
{
  return;
}



/* ===================
    Surface heat flux
   =================== */

void heat_flux(E)
    struct All_variables *E;
{
    int m,e,el,i,j,node,lnode;
    float *flux[NCS],*SU[NCS],*RU[NCS];
    float VV[4][9],u[9],T[9],dTdz[9],area,uT;
    float *sum_h;
    double rtf[4][9];

    struct Shape_function GN;
    struct Shape_function_dA dOmega;
    struct Shape_function_dx GNx;
    void get_global_shape_fn();
    void velo_from_element();
    void sum_across_surface();
    void return_horiz_ave();
    void return_horiz_ave_f();

    const int dims=E->mesh.nsd,dofs=E->mesh.dof;
    const int vpts=vpoints[dims];
    const int ppts=ppoints[dims];
    const int ends=enodes[dims];
    const int nno=E->lmesh.nno;
    const int lev = E->mesh.levmax;
    const int sphere_key=1;


  sum_h = (float *) malloc((5)*sizeof(float));
  for(i=0;i<=4;i++)
    sum_h[i] = 0.0;

  for(m=1;m<=E->sphere.caps_per_proc;m++) {

    flux[m] = (float *) malloc((1+nno)*sizeof(float));

    for(i=1;i<=nno;i++)   {
      flux[m][i] = 0.0;
      }

    for(e=1;e<=E->lmesh.nel;e++) {
      get_global_shape_fn(E,e,&GN,&GNx,&dOmega,0,sphere_key,rtf,lev,m);

      velo_from_element(E,VV,m,e,sphere_key);

      for(i=1;i<=vpts;i++)   {
        u[i] = 0.0;
        T[i] = 0.0;
        dTdz[i] = 0.0;
        for(j=1;j<=ends;j++)  {
          u[i] += VV[3][j]*E->N.vpt[GNVINDEX(j,i)];
          T[i] += E->T[m][E->ien[m][e].node[j]]*E->N.vpt[GNVINDEX(j,i)];
          dTdz[i] += -E->T[m][E->ien[m][e].node[j]]*GNx.vpt[GNVXINDEX(2,j,i)];
          }
        }

      uT = 0.0;
      area = 0.0;
      for(i=1;i<=vpts;i++)   {
        uT += u[i]*T[i]*dOmega.vpt[i] + dTdz[i]*dOmega.vpt[i];
        }

      uT /= E->eco[m][e].area;

      for(j=1;j<=ends;j++)
        flux[m][E->ien[m][e].node[j]] += uT*E->TWW[lev][m][e].node[j];

      }             /* end of e */
    }             /* end of m */


  (E->exchange_node_f)(E,flux,lev);

  for(m=1;m<=E->sphere.caps_per_proc;m++)
     for(i=1;i<=nno;i++)
       flux[m][i] *= E->MASS[lev][m][i];

  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=E->lmesh.nsf;i++)
        E->slice.shflux[m][i]=2*flux[m][E->surf_node[m][i]]-flux[m][E->surf_node[m][i]-1];

  if (E->parallel.me_loc[3]==0)
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=E->lmesh.nsf;i++)
        E->slice.bhflux[m][i] = 2*flux[m][E->surf_node[m][i]-E->lmesh.noz+1]
                                - flux[m][E->surf_node[m][i]-E->lmesh.noz+2];

  for(m=1;m<=E->sphere.caps_per_proc;m++)
    for(e=1;e<=E->lmesh.snel;e++) {
         uT =(E->slice.shflux[m][E->sien[m][e].node[1]] +
              E->slice.shflux[m][E->sien[m][e].node[2]] +
              E->slice.shflux[m][E->sien[m][e].node[3]] +
              E->slice.shflux[m][E->sien[m][e].node[4]])*0.25;
         el = e*E->lmesh.elz;
         sum_h[0] += uT*E->eco[m][el].area;
         sum_h[1] += E->eco[m][el].area;

         uT =(E->slice.bhflux[m][E->sien[m][e].node[1]] +
              E->slice.bhflux[m][E->sien[m][e].node[2]] +
              E->slice.bhflux[m][E->sien[m][e].node[3]] +
              E->slice.bhflux[m][E->sien[m][e].node[4]])*0.25;
         el = (e-1)*E->lmesh.elz+1;
         sum_h[2] += uT*E->eco[m][el].area;
         sum_h[3] += E->eco[m][el].area;
         }

  sum_across_surface(E,sum_h,4);

  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)   {
    sum_h[0] = sum_h[0]/sum_h[1];
    /*     if (E->control.verbose && E->parallel.me==E->parallel.nprocz-1) {
	     fprintf(E->fp_out,"surface heat flux= %f %f\n",sum_h[0],E->monitor.elapsed_time);
             fflush(E->fp_out);
    } */
    if (E->parallel.me==E->parallel.nprocz-1) {
      fprintf(stderr,"surface heat flux= %f\n",sum_h[0]);
      /*fprintf(E->fp,"surface heat flux= %f\n",sum_h[0]);*/
    }
  }

  if (E->parallel.me_loc[3]==0)    {
    sum_h[2] = sum_h[2]/sum_h[3];
/*     if (E->control.verbose && E->parallel.me==0) fprintf(E->fp_out,"bottom heat flux= %f %f\n",sum_h[2],E->monitor.elapsed_time); */
    if (E->parallel.me==0) {
      fprintf(stderr,"bottom heat flux= %f\n",sum_h[2]);
      fprintf(E->fp,"bottom heat flux= %f\n",sum_h[2]);
    }
  }


  for(m=1;m<=E->sphere.caps_per_proc;m++)
    free((void *)flux[m]);

  free((void *)sum_h);

  return;
}



/*
  compute horizontal average of temperature and rms velocity
*/
void compute_horiz_avg(struct All_variables *E)
{
    void return_horiz_ave_f();

    int m, i;
    float *S1[NCS],*S2[NCS],*S3[NCS];

    for(m=1;m<=E->sphere.caps_per_proc;m++)      {
	S1[m] = (float *)malloc((E->lmesh.nno+1)*sizeof(float));
	S2[m] = (float *)malloc((E->lmesh.nno+1)*sizeof(float));
	S3[m] = (float *)malloc((E->lmesh.nno+1)*sizeof(float));
    }

    for(m=1;m<=E->sphere.caps_per_proc;m++) {
	for(i=1;i<=E->lmesh.nno;i++) {
	    S1[m][i] = E->T[m][i];
	    S2[m][i] = E->sphere.cap[m].V[1][i]*E->sphere.cap[m].V[1][i]
          	+ E->sphere.cap[m].V[2][i]*E->sphere.cap[m].V[2][i];
	    S3[m][i] = E->sphere.cap[m].V[3][i]*E->sphere.cap[m].V[3][i];
	}
    }

    return_horiz_ave_f(E,S1,E->Have.T);
    return_horiz_ave_f(E,S2,E->Have.V[1]);
    return_horiz_ave_f(E,S3,E->Have.V[2]);

    for(m=1;m<=E->sphere.caps_per_proc;m++) {
	free((void *)S1[m]);
	free((void *)S2[m]);
	free((void *)S3[m]);
    }

    for (i=1;i<=E->lmesh.noz;i++) {
	E->Have.V[1][i] = sqrt(E->Have.V[1][i]);
	E->Have.V[2][i] = sqrt(E->Have.V[2][i]);
    }

}
back to top