Revision 8aef18845266f5c05904c610088f2d1ed58f6be3 authored by Al Viro on 16 June 2011, 14:10:06 UTC, committed by Al Viro on 16 June 2011, 15:28:16 UTC
[Kudos to dhowells for tracking that crap down]

If two processes attempt to cause automounting on the same mountpoint at the
same time, the vfsmount holding the mountpoint will be left with one too few
references on it, causing a BUG when the kernel tries to clean up.

The problem is that lock_mount() drops the caller's reference to the
mountpoint's vfsmount in the case where it finds something already mounted on
the mountpoint as it transits to the mounted filesystem and replaces path->mnt
with the new mountpoint vfsmount.

During a pathwalk, however, we don't take a reference on the vfsmount if it is
the same as the one in the nameidata struct, but do_add_mount() doesn't know
this.

The fix is to make sure we have a ref on the vfsmount of the mountpoint before
calling do_add_mount().  However, if lock_mount() doesn't transit, we're then
left with an extra ref on the mountpoint vfsmount which needs releasing.
We can handle that in follow_managed() by not making assumptions about what
we can and what we cannot get from lookup_mnt() as the current code does.

The callers of follow_managed() expect that reference to path->mnt will be
grabbed iff path->mnt has been changed.  follow_managed() and follow_automount()
keep track of whether such reference has been grabbed and assume that it'll
happen in those and only those cases that'll have us return with changed
path->mnt.  That assumption is almost correct - it breaks in case of
racing automounts and in even harder to hit race between following a mountpoint
and a couple of mount --move.  The thing is, we don't need to make that
assumption at all - after the end of loop in follow_manage() we can check
if path->mnt has ended up unchanged and do mntput() if needed.

The BUG can be reproduced with the following test program:

	#include <stdio.h>
	#include <sys/types.h>
	#include <sys/stat.h>
	#include <unistd.h>
	#include <sys/wait.h>
	int main(int argc, char **argv)
	{
		int pid, ws;
		struct stat buf;
		pid = fork();
		stat(argv[1], &buf);
		if (pid > 0) wait(&ws);
		return 0;
	}

and the following procedure:

 (1) Mount an NFS volume that on the server has something else mounted on a
     subdirectory.  For instance, I can mount / from my server:

	mount warthog:/ /mnt -t nfs4 -r

     On the server /data has another filesystem mounted on it, so NFS will see
     a change in FSID as it walks down the path, and will mark /mnt/data as
     being a mountpoint.  This will cause the automount code to be triggered.

     !!! Do not look inside the mounted fs at this point !!!

 (2) Run the above program on a file within the submount to generate two
     simultaneous automount requests:

	/tmp/forkstat /mnt/data/testfile

 (3) Unmount the automounted submount:

	umount /mnt/data

 (4) Unmount the original mount:

	umount /mnt

     At this point the kernel should throw a BUG with something like the
     following:

	BUG: Dentry ffff880032e3c5c0{i=2,n=} still in use (1) [unmount of nfs4 0:12]

Note that the bug appears on the root dentry of the original mount, not the
mountpoint and not the submount because sys_umount() hasn't got to its final
mntput_no_expire() yet, but this isn't so obvious from the call trace:

 [<ffffffff8117cd82>] shrink_dcache_for_umount+0x69/0x82
 [<ffffffff8116160e>] generic_shutdown_super+0x37/0x15b
 [<ffffffffa00fae56>] ? nfs_super_return_all_delegations+0x2e/0x1b1 [nfs]
 [<ffffffff811617f3>] kill_anon_super+0x1d/0x7e
 [<ffffffffa00d0be1>] nfs4_kill_super+0x60/0xb6 [nfs]
 [<ffffffff81161c17>] deactivate_locked_super+0x34/0x83
 [<ffffffff811629ff>] deactivate_super+0x6f/0x7b
 [<ffffffff81186261>] mntput_no_expire+0x18d/0x199
 [<ffffffff811862a8>] mntput+0x3b/0x44
 [<ffffffff81186d87>] release_mounts+0xa2/0xbf
 [<ffffffff811876af>] sys_umount+0x47a/0x4ba
 [<ffffffff8109e1ca>] ? trace_hardirqs_on_caller+0x1fd/0x22f
 [<ffffffff816ea86b>] system_call_fastpath+0x16/0x1b

as do_umount() is inlined.  However, you can see release_mounts() in there.

Note also that it may be necessary to have multiple CPU cores to be able to
trigger this bug.

Tested-by: Jeff Layton <jlayton@redhat.com>
Tested-by: Ian Kent <raven@themaw.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1 parent 50338b8
Raw File
nmi_watchdog.txt

[NMI watchdog is available for x86 and x86-64 architectures]

Is your system locking up unpredictably? No keyboard activity, just
a frustrating complete hard lockup? Do you want to help us debugging
such lockups? If all yes then this document is definitely for you.

On many x86/x86-64 type hardware there is a feature that enables
us to generate 'watchdog NMI interrupts'.  (NMI: Non Maskable Interrupt
which get executed even if the system is otherwise locked up hard).
This can be used to debug hard kernel lockups.  By executing periodic
NMI interrupts, the kernel can monitor whether any CPU has locked up,
and print out debugging messages if so.

In order to use the NMI watchdog, you need to have APIC support in your
kernel. For SMP kernels, APIC support gets compiled in automatically. For
UP, enable either CONFIG_X86_UP_APIC (Processor type and features -> Local
APIC support on uniprocessors) or CONFIG_X86_UP_IOAPIC (Processor type and
features -> IO-APIC support on uniprocessors) in your kernel config.
CONFIG_X86_UP_APIC is for uniprocessor machines without an IO-APIC.
CONFIG_X86_UP_IOAPIC is for uniprocessor with an IO-APIC. [Note: certain
kernel debugging options, such as Kernel Stack Meter or Kernel Tracer,
may implicitly disable the NMI watchdog.]

For x86-64, the needed APIC is always compiled in.

Using local APIC (nmi_watchdog=2) needs the first performance register, so
you can't use it for other purposes (such as high precision performance
profiling.) However, at least oprofile and the perfctr driver disable the
local APIC NMI watchdog automatically.

To actually enable the NMI watchdog, use the 'nmi_watchdog=N' boot
parameter.  Eg. the relevant lilo.conf entry:

        append="nmi_watchdog=1"

For SMP machines and UP machines with an IO-APIC use nmi_watchdog=1.
For UP machines without an IO-APIC use nmi_watchdog=2, this only works
for some processor types.  If in doubt, boot with nmi_watchdog=1 and
check the NMI count in /proc/interrupts; if the count is zero then
reboot with nmi_watchdog=2 and check the NMI count.  If it is still
zero then log a problem, you probably have a processor that needs to be
added to the nmi code.

A 'lockup' is the following scenario: if any CPU in the system does not
execute the period local timer interrupt for more than 5 seconds, then
the NMI handler generates an oops and kills the process. This
'controlled crash' (and the resulting kernel messages) can be used to
debug the lockup. Thus whenever the lockup happens, wait 5 seconds and
the oops will show up automatically. If the kernel produces no messages
then the system has crashed so hard (eg. hardware-wise) that either it
cannot even accept NMI interrupts, or the crash has made the kernel
unable to print messages.

Be aware that when using local APIC, the frequency of NMI interrupts
it generates, depends on the system load. The local APIC NMI watchdog,
lacking a better source, uses the "cycles unhalted" event. As you may
guess it doesn't tick when the CPU is in the halted state (which happens
when the system is idle), but if your system locks up on anything but the
"hlt" processor instruction, the watchdog will trigger very soon as the
"cycles unhalted" event will happen every clock tick. If it locks up on
"hlt", then you are out of luck -- the event will not happen at all and the
watchdog won't trigger. This is a shortcoming of the local APIC watchdog
-- unfortunately there is no "clock ticks" event that would work all the
time. The I/O APIC watchdog is driven externally and has no such shortcoming.
But its NMI frequency is much higher, resulting in a more significant hit
to the overall system performance.

On x86 nmi_watchdog is disabled by default so you have to enable it with
a boot time parameter.

It's possible to disable the NMI watchdog in run-time by writing "0" to
/proc/sys/kernel/nmi_watchdog. Writing "1" to the same file will re-enable
the NMI watchdog. Notice that you still need to use "nmi_watchdog=" parameter
at boot time.

NOTE: In kernels prior to 2.4.2-ac18 the NMI-oopser is enabled unconditionally
on x86 SMP boxes.

[ feel free to send bug reports, suggestions and patches to
  Ingo Molnar <mingo@redhat.com> or the Linux SMP mailing
  list at <linux-smp@vger.kernel.org> ]

back to top