Revision 8aef18845266f5c05904c610088f2d1ed58f6be3 authored by Al Viro on 16 June 2011, 14:10:06 UTC, committed by Al Viro on 16 June 2011, 15:28:16 UTC
[Kudos to dhowells for tracking that crap down]

If two processes attempt to cause automounting on the same mountpoint at the
same time, the vfsmount holding the mountpoint will be left with one too few
references on it, causing a BUG when the kernel tries to clean up.

The problem is that lock_mount() drops the caller's reference to the
mountpoint's vfsmount in the case where it finds something already mounted on
the mountpoint as it transits to the mounted filesystem and replaces path->mnt
with the new mountpoint vfsmount.

During a pathwalk, however, we don't take a reference on the vfsmount if it is
the same as the one in the nameidata struct, but do_add_mount() doesn't know
this.

The fix is to make sure we have a ref on the vfsmount of the mountpoint before
calling do_add_mount().  However, if lock_mount() doesn't transit, we're then
left with an extra ref on the mountpoint vfsmount which needs releasing.
We can handle that in follow_managed() by not making assumptions about what
we can and what we cannot get from lookup_mnt() as the current code does.

The callers of follow_managed() expect that reference to path->mnt will be
grabbed iff path->mnt has been changed.  follow_managed() and follow_automount()
keep track of whether such reference has been grabbed and assume that it'll
happen in those and only those cases that'll have us return with changed
path->mnt.  That assumption is almost correct - it breaks in case of
racing automounts and in even harder to hit race between following a mountpoint
and a couple of mount --move.  The thing is, we don't need to make that
assumption at all - after the end of loop in follow_manage() we can check
if path->mnt has ended up unchanged and do mntput() if needed.

The BUG can be reproduced with the following test program:

	#include <stdio.h>
	#include <sys/types.h>
	#include <sys/stat.h>
	#include <unistd.h>
	#include <sys/wait.h>
	int main(int argc, char **argv)
	{
		int pid, ws;
		struct stat buf;
		pid = fork();
		stat(argv[1], &buf);
		if (pid > 0) wait(&ws);
		return 0;
	}

and the following procedure:

 (1) Mount an NFS volume that on the server has something else mounted on a
     subdirectory.  For instance, I can mount / from my server:

	mount warthog:/ /mnt -t nfs4 -r

     On the server /data has another filesystem mounted on it, so NFS will see
     a change in FSID as it walks down the path, and will mark /mnt/data as
     being a mountpoint.  This will cause the automount code to be triggered.

     !!! Do not look inside the mounted fs at this point !!!

 (2) Run the above program on a file within the submount to generate two
     simultaneous automount requests:

	/tmp/forkstat /mnt/data/testfile

 (3) Unmount the automounted submount:

	umount /mnt/data

 (4) Unmount the original mount:

	umount /mnt

     At this point the kernel should throw a BUG with something like the
     following:

	BUG: Dentry ffff880032e3c5c0{i=2,n=} still in use (1) [unmount of nfs4 0:12]

Note that the bug appears on the root dentry of the original mount, not the
mountpoint and not the submount because sys_umount() hasn't got to its final
mntput_no_expire() yet, but this isn't so obvious from the call trace:

 [<ffffffff8117cd82>] shrink_dcache_for_umount+0x69/0x82
 [<ffffffff8116160e>] generic_shutdown_super+0x37/0x15b
 [<ffffffffa00fae56>] ? nfs_super_return_all_delegations+0x2e/0x1b1 [nfs]
 [<ffffffff811617f3>] kill_anon_super+0x1d/0x7e
 [<ffffffffa00d0be1>] nfs4_kill_super+0x60/0xb6 [nfs]
 [<ffffffff81161c17>] deactivate_locked_super+0x34/0x83
 [<ffffffff811629ff>] deactivate_super+0x6f/0x7b
 [<ffffffff81186261>] mntput_no_expire+0x18d/0x199
 [<ffffffff811862a8>] mntput+0x3b/0x44
 [<ffffffff81186d87>] release_mounts+0xa2/0xbf
 [<ffffffff811876af>] sys_umount+0x47a/0x4ba
 [<ffffffff8109e1ca>] ? trace_hardirqs_on_caller+0x1fd/0x22f
 [<ffffffff816ea86b>] system_call_fastpath+0x16/0x1b

as do_umount() is inlined.  However, you can see release_mounts() in there.

Note also that it may be necessary to have multiple CPU cores to be able to
trigger this bug.

Tested-by: Jeff Layton <jlayton@redhat.com>
Tested-by: Ian Kent <raven@themaw.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1 parent 50338b8
Raw File
evbug.c
/*
 *  Copyright (c) 1999-2001 Vojtech Pavlik
 */

/*
 *  Input driver event debug module - dumps all events into syslog
 */

/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * Should you need to contact me, the author, you can do so either by
 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/slab.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/init.h>
#include <linux/device.h>

MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>");
MODULE_DESCRIPTION("Input driver event debug module");
MODULE_LICENSE("GPL");

static void evbug_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
{
	printk(KERN_DEBUG pr_fmt("Event. Dev: %s, Type: %d, Code: %d, Value: %d\n"),
	       dev_name(&handle->dev->dev), type, code, value);
}

static int evbug_connect(struct input_handler *handler, struct input_dev *dev,
			 const struct input_device_id *id)
{
	struct input_handle *handle;
	int error;

	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
	if (!handle)
		return -ENOMEM;

	handle->dev = dev;
	handle->handler = handler;
	handle->name = "evbug";

	error = input_register_handle(handle);
	if (error)
		goto err_free_handle;

	error = input_open_device(handle);
	if (error)
		goto err_unregister_handle;

	printk(KERN_DEBUG pr_fmt("Connected device: %s (%s at %s)\n"),
	       dev_name(&dev->dev),
	       dev->name ?: "unknown",
	       dev->phys ?: "unknown");

	return 0;

 err_unregister_handle:
	input_unregister_handle(handle);
 err_free_handle:
	kfree(handle);
	return error;
}

static void evbug_disconnect(struct input_handle *handle)
{
	printk(KERN_DEBUG pr_fmt("Disconnected device: %s\n"),
	       dev_name(&handle->dev->dev));

	input_close_device(handle);
	input_unregister_handle(handle);
	kfree(handle);
}

static const struct input_device_id evbug_ids[] = {
	{ .driver_info = 1 },	/* Matches all devices */
	{ },			/* Terminating zero entry */
};

MODULE_DEVICE_TABLE(input, evbug_ids);

static struct input_handler evbug_handler = {
	.event =	evbug_event,
	.connect =	evbug_connect,
	.disconnect =	evbug_disconnect,
	.name =		"evbug",
	.id_table =	evbug_ids,
};

static int __init evbug_init(void)
{
	return input_register_handler(&evbug_handler);
}

static void __exit evbug_exit(void)
{
	input_unregister_handler(&evbug_handler);
}

module_init(evbug_init);
module_exit(evbug_exit);
back to top