Revision 8aef18845266f5c05904c610088f2d1ed58f6be3 authored by Al Viro on 16 June 2011, 14:10:06 UTC, committed by Al Viro on 16 June 2011, 15:28:16 UTC
[Kudos to dhowells for tracking that crap down]

If two processes attempt to cause automounting on the same mountpoint at the
same time, the vfsmount holding the mountpoint will be left with one too few
references on it, causing a BUG when the kernel tries to clean up.

The problem is that lock_mount() drops the caller's reference to the
mountpoint's vfsmount in the case where it finds something already mounted on
the mountpoint as it transits to the mounted filesystem and replaces path->mnt
with the new mountpoint vfsmount.

During a pathwalk, however, we don't take a reference on the vfsmount if it is
the same as the one in the nameidata struct, but do_add_mount() doesn't know
this.

The fix is to make sure we have a ref on the vfsmount of the mountpoint before
calling do_add_mount().  However, if lock_mount() doesn't transit, we're then
left with an extra ref on the mountpoint vfsmount which needs releasing.
We can handle that in follow_managed() by not making assumptions about what
we can and what we cannot get from lookup_mnt() as the current code does.

The callers of follow_managed() expect that reference to path->mnt will be
grabbed iff path->mnt has been changed.  follow_managed() and follow_automount()
keep track of whether such reference has been grabbed and assume that it'll
happen in those and only those cases that'll have us return with changed
path->mnt.  That assumption is almost correct - it breaks in case of
racing automounts and in even harder to hit race between following a mountpoint
and a couple of mount --move.  The thing is, we don't need to make that
assumption at all - after the end of loop in follow_manage() we can check
if path->mnt has ended up unchanged and do mntput() if needed.

The BUG can be reproduced with the following test program:

	#include <stdio.h>
	#include <sys/types.h>
	#include <sys/stat.h>
	#include <unistd.h>
	#include <sys/wait.h>
	int main(int argc, char **argv)
	{
		int pid, ws;
		struct stat buf;
		pid = fork();
		stat(argv[1], &buf);
		if (pid > 0) wait(&ws);
		return 0;
	}

and the following procedure:

 (1) Mount an NFS volume that on the server has something else mounted on a
     subdirectory.  For instance, I can mount / from my server:

	mount warthog:/ /mnt -t nfs4 -r

     On the server /data has another filesystem mounted on it, so NFS will see
     a change in FSID as it walks down the path, and will mark /mnt/data as
     being a mountpoint.  This will cause the automount code to be triggered.

     !!! Do not look inside the mounted fs at this point !!!

 (2) Run the above program on a file within the submount to generate two
     simultaneous automount requests:

	/tmp/forkstat /mnt/data/testfile

 (3) Unmount the automounted submount:

	umount /mnt/data

 (4) Unmount the original mount:

	umount /mnt

     At this point the kernel should throw a BUG with something like the
     following:

	BUG: Dentry ffff880032e3c5c0{i=2,n=} still in use (1) [unmount of nfs4 0:12]

Note that the bug appears on the root dentry of the original mount, not the
mountpoint and not the submount because sys_umount() hasn't got to its final
mntput_no_expire() yet, but this isn't so obvious from the call trace:

 [<ffffffff8117cd82>] shrink_dcache_for_umount+0x69/0x82
 [<ffffffff8116160e>] generic_shutdown_super+0x37/0x15b
 [<ffffffffa00fae56>] ? nfs_super_return_all_delegations+0x2e/0x1b1 [nfs]
 [<ffffffff811617f3>] kill_anon_super+0x1d/0x7e
 [<ffffffffa00d0be1>] nfs4_kill_super+0x60/0xb6 [nfs]
 [<ffffffff81161c17>] deactivate_locked_super+0x34/0x83
 [<ffffffff811629ff>] deactivate_super+0x6f/0x7b
 [<ffffffff81186261>] mntput_no_expire+0x18d/0x199
 [<ffffffff811862a8>] mntput+0x3b/0x44
 [<ffffffff81186d87>] release_mounts+0xa2/0xbf
 [<ffffffff811876af>] sys_umount+0x47a/0x4ba
 [<ffffffff8109e1ca>] ? trace_hardirqs_on_caller+0x1fd/0x22f
 [<ffffffff816ea86b>] system_call_fastpath+0x16/0x1b

as do_umount() is inlined.  However, you can see release_mounts() in there.

Note also that it may be necessary to have multiple CPU cores to be able to
trigger this bug.

Tested-by: Jeff Layton <jlayton@redhat.com>
Tested-by: Ian Kent <raven@themaw.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1 parent 50338b8
Raw File
input-compat.h
#ifndef _INPUT_COMPAT_H
#define _INPUT_COMPAT_H

/*
 * 32bit compatibility wrappers for the input subsystem.
 *
 * Very heavily based on evdev.c - Copyright (c) 1999-2002 Vojtech Pavlik
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

#include <linux/compiler.h>
#include <linux/compat.h>
#include <linux/input.h>

#ifdef CONFIG_COMPAT

/* Note to the author of this code: did it ever occur to
   you why the ifdefs are needed? Think about it again. -AK */
#if defined(CONFIG_X86_64) || defined(CONFIG_TILE)
#  define INPUT_COMPAT_TEST is_compat_task()
#elif defined(CONFIG_S390)
#  define INPUT_COMPAT_TEST test_thread_flag(TIF_31BIT)
#elif defined(CONFIG_MIPS)
#  define INPUT_COMPAT_TEST test_thread_flag(TIF_32BIT_ADDR)
#else
#  define INPUT_COMPAT_TEST test_thread_flag(TIF_32BIT)
#endif

struct input_event_compat {
	struct compat_timeval time;
	__u16 type;
	__u16 code;
	__s32 value;
};

struct ff_periodic_effect_compat {
	__u16 waveform;
	__u16 period;
	__s16 magnitude;
	__s16 offset;
	__u16 phase;

	struct ff_envelope envelope;

	__u32 custom_len;
	compat_uptr_t custom_data;
};

struct ff_effect_compat {
	__u16 type;
	__s16 id;
	__u16 direction;
	struct ff_trigger trigger;
	struct ff_replay replay;

	union {
		struct ff_constant_effect constant;
		struct ff_ramp_effect ramp;
		struct ff_periodic_effect_compat periodic;
		struct ff_condition_effect condition[2]; /* One for each axis */
		struct ff_rumble_effect rumble;
	} u;
};

static inline size_t input_event_size(void)
{
	return INPUT_COMPAT_TEST ?
		sizeof(struct input_event_compat) : sizeof(struct input_event);
}

#else

static inline size_t input_event_size(void)
{
	return sizeof(struct input_event);
}

#endif /* CONFIG_COMPAT */

int input_event_from_user(const char __user *buffer,
			 struct input_event *event);

int input_event_to_user(char __user *buffer,
			const struct input_event *event);

int input_ff_effect_from_user(const char __user *buffer, size_t size,
			      struct ff_effect *effect);

#endif /* _INPUT_COMPAT_H */
back to top