Revision 8b22682704c00bd278c44dae1686f726d261b718 authored by Steven Murray on 09 January 2023, 21:13:32 UTC, committed by Steven Murray on 09 January 2023, 21:13:32 UTC
1 parent e377413
cst_beam.py
# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
"""Class for reading beam CST files."""
from __future__ import annotations
import os
import re
import warnings
from typing import Callable
import numpy as np
from .. import utils as uvutils
from .uvbeam import UVBeam
__all__ = ["CSTBeam"]
class CSTBeam(UVBeam):
"""
Defines a CST-specific subclass of UVBeam for reading CST text files.
This class should not be interacted with directly, instead use the
read_cst_beam method on the UVBeam class.
"""
def name2freq(self, fname):
"""
Extract frequency from the filename.
Assumes the file name contains a substring with the frequency channel
in MHz that the data represents.
e.g. "HERA_Sim_120.87MHz.txt" should yield 120.87e6
Parameters
----------
fname : str
Filename to parse.
Returns
-------
float
Frequency extracted from filename in Hz.
"""
fi = fname.rfind("Hz")
frequency = float(re.findall(r"\d*\.\d+|\d+", fname[:fi])[-1])
si_prefix = fname[fi - 1]
si_dict = {"k": 1e3, "M": 1e6, "G": 1e9}
if si_prefix in si_dict.keys():
frequency = frequency * si_dict[si_prefix]
return frequency
def read_cst_beam(
self,
filename,
beam_type="power",
use_future_array_shapes=False,
feed_pol="x",
rotate_pol=True,
frequency=None,
telescope_name=None,
feed_name=None,
feed_version=None,
model_name=None,
model_version=None,
history="",
x_orientation=None,
reference_impedance=None,
extra_keywords=None,
run_check=True,
check_extra=True,
run_check_acceptability=True,
check_auto_power=True,
fix_auto_power=True,
thetaphi_to_azza_fnc: Callable | None = None,
):
"""
Read in data from a cst file.
Parameters
----------
filename : str
The cst file to read from.
beam_type : str
What beam_type to read in ('power' or 'efield').
use_future_array_shapes : bool
Option to convert to the future planned array shapes before the changes go
into effect by removing the spectral window axis.
feed_pol : str
The feed or polarization or list of feeds or polarizations the
files correspond to.
Defaults to 'x' (meaning x for efield or xx for power beams).
rotate_pol : bool
If True, assume the structure in the simulation is symmetric under
90 degree rotations about the z-axis (so that the y polarization can be
constructed by rotating the x polarization or vice versa).
Default: True if feed_pol is a single value or a list with all
the same values in it, False if it is a list with varying values.
frequency : float or list of float
The frequency or list of frequencies corresponding to the filename(s).
This is assumed to be in the same order as the files.
If not passed, the code attempts to parse it from the filenames.
telescope_name : str
The name of the telescope corresponding to the filename(s).
feed_name : str
The name of the feed corresponding to the filename(s).
feed_version : str
The version of the feed corresponding to the filename(s).
model_name : str
The name of the model corresponding to the filename(s).
model_version : str
The version of the model corresponding to the filename(s).
history : str
A string detailing the history of the filename(s).
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization. Options are "east" (indicating
east/west orientation) and "north" (indicating north/south orientation)
reference_impedance : float, optional
The reference impedance of the model(s).
extra_keywords : dict, optional
A dictionary containing any extra_keywords.
run_check : bool
Option to check for the existence and proper shapes of
required parameters after reading in the file.
check_extra : bool
Option to check optional parameters as well as
required ones.
run_check_acceptability : bool
Option to check acceptable range of the values of
required parameters after reading in the file.
check_auto_power : bool
For power beams, check whether the auto polarization beams have non-zero
imaginary values in the data_array (which should not mathematically exist).
fix_auto_power : bool
For power beams, if auto polarization beams with imaginary values are found,
fix those values so that they are real-only in data_array.
thetaphi_to_azza_fnc : callable
Since CST can output theta/phi coordinates in a number of conventions, you
can provide a function to convert from the input theta/phi to azimuth/
zenith-angle, as required by UVBeam. The signature of the function should
be ``az, za = fnc(theta, phi)``. Theta and Phi will be in radians.
"""
# update filename attribute
basename = os.path.basename(filename)
self.filename = [basename]
self._filename.form = (1,)
self.telescope_name = telescope_name
self.feed_name = feed_name
self.feed_version = feed_version
self.model_name = model_name
self.model_version = model_version
self.history = history
if not uvutils._check_history_version(self.history, self.pyuvdata_version_str):
self.history += self.pyuvdata_version_str
if x_orientation is not None:
self.x_orientation = x_orientation
if reference_impedance is not None:
self.reference_impedance = float(reference_impedance)
if extra_keywords is not None:
self.extra_keywords = extra_keywords
if beam_type == "power":
self.Naxes_vec = 1
if feed_pol == "x":
feed_pol = "xx"
elif feed_pol == "y":
feed_pol = "yy"
if rotate_pol:
rot_pol_dict = {"xx": "yy", "yy": "xx", "xy": "yx", "yx": "xy"}
pol2 = rot_pol_dict[feed_pol]
self.polarization_array = np.array(
[uvutils.polstr2num(feed_pol), uvutils.polstr2num(pol2)]
)
else:
self.polarization_array = np.array([uvutils.polstr2num(feed_pol)])
self.Npols = len(self.polarization_array)
self._set_power()
else:
self.Naxes_vec = 2
self.Ncomponents_vec = 2
if rotate_pol:
if feed_pol == "x":
self.feed_array = np.array(["x", "y"])
else:
self.feed_array = np.array(["y", "x"])
else:
if feed_pol == "x":
self.feed_array = np.array(["x"])
else:
self.feed_array = np.array(["y"])
self.Nfeeds = self.feed_array.size
self._set_efield()
self.data_normalization = "physical"
self.antenna_type = "simple"
self.Nfreqs = 1
self.freq_array = np.zeros((1, self.Nfreqs))
self.bandpass_array = np.zeros((1, self.Nfreqs))
if not use_future_array_shapes:
self.Nspws = 1
self.spw_array = np.array([0])
self.pixel_coordinate_system = "az_za"
self._set_cs_params()
out_file = open(filename, "r")
line = out_file.readline().strip() # Get the first line
out_file.close()
raw_names = line.split("]")
raw_names = [raw_name for raw_name in raw_names if not raw_name == ""]
column_names = []
units = []
for raw_name in raw_names:
column_name, unit = tuple(raw_name.split("["))
column_names.append("".join(column_name.lower().split(" ")))
units.append(unit.lower().strip())
data = np.loadtxt(filename, skiprows=2)
theta_col = column_names.index("theta")
phi_col = column_names.index("phi")
for icol, un in enumerate(units):
if "deg" in un:
data[:, icol] = np.radians(data[:, icol])
theta_data = data[:, theta_col]
phi_data = data[:, phi_col]
if thetaphi_to_azza_fnc is not None:
phi_data, theta_data = thetaphi_to_azza_fnc(theta_data, phi_data)
if theta_data.max() > np.pi * 1.00001 or theta_data.min() < 0:
raise ValueError(
"Some zenith-angles are outside (0, pi). Range = "
f"{theta_data.min(), theta_data.max()}. "
"Check your thetaphi_to_azza_fnc."
)
if phi_data.max() > phi_data.min() + 2 * np.pi:
raise ValueError(
"The azimuthal angle has a range greater than 2pi: "
f"{phi_data.min(), phi_data.max()}. "
"Check your thetaphi_to_azza_fnc."
)
phi_data %= 2 * np.pi
theta_axis = np.sort(np.unique(theta_data))
phi_axis = np.sort(np.unique(phi_data))
# Get the order of the data in which phi increases on the inner loop and theta
# on the outer.
sort_idx = np.lexsort((phi_data, theta_data))
theta_data = theta_data[sort_idx]
phi_data = phi_data[sort_idx]
data = data[sort_idx]
data[:, theta_col] = theta_data
data[:, phi_col] = phi_data
if self.beam_type == "power":
data_col_enum = ["abs(e)", "abs(v)"]
data_col = []
for name in data_col_enum:
this_col = np.where(np.array(column_names) == name)[0]
if this_col.size > 0:
data_col = data_col + this_col.tolist()
if len(data_col) == 0:
raise ValueError(f"No power column found in file: {filename}")
elif len(data_col) > 1:
raise ValueError(
f"Multiple possible power columns found in file: {filename}"
)
data_col = data_col[0]
tupled = list(zip(theta_data, phi_data))
n = len(tupled)
new_data = np.zeros((len(theta_axis) * len(phi_axis), data.shape[1]))
i = 0
idx = -1
for za in theta_axis:
for az in phi_axis:
if (idx + 1) < n and (za, az) == tupled[idx + 1]:
# best case scenario is everything is in grid already.
# For most beams, the large majority of iterations will hit this.
idx = idx + 1
new_data[i] = data[idx]
else:
try:
# Find the index of these coordinates
# There may be multiple indices with the same az/za coords,
# because of poles -- here we just take the first one.
# NOTE: this is specifically *az/za* coordinates -- so even
# though (az, 0) is the same *location* for all values of az,
# it is represented by different coordinates, and we therefore
# will take each of them, not just the first (this is important
# because the phase
# differs for different azimuth values at zenith). Conversely,
# for an input coordinate system that represents some location
# more than once (which is bound to happen for any particular
# choice of regular grid in spherical coordinates), we need only
# use one of the coordinates (the others will by necessity
# contain the same information).
idx = tupled.index((za, az))
new_data[i] = data[idx]
except ValueError as err:
# These co-ordinates do not exist.
# However, if the az/za coordinates don't exist and we're at a
# pole, we can potentially deduce the data from other
# coordinates at the pole. In general, the beam at (az, 0) is
# the conjugate of the beam at (az + pi, 0). That is, when
# tracing a meridian through the pole, the amplitude is
# perfectly smooth (so all az at the zenith have the same
# amplitude), but the phase "flips" right at the pole as you
# pass through.
if za == 0 or za == np.pi:
if beam_type == "power":
# We only care about abs() columns
zero_idx = np.where(theta_data == 0)[0][0]
new_data[i, data_col] = data[zero_idx, data_col]
else:
# We care about all the columns.
idx = np.where(
np.isclose(theta_data, za)
& np.isclose(phi_data, (az + np.pi) % (2 * np.pi))
)[0]
if len(idx) == 0:
raise ValueError(
f"No coordinate data for za={za} with az={az}"
) from err
idx = idx[0]
for icol, name in enumerate(column_names):
if "phase" in name: # flip the phase.
new_data[i, icol] = (
data[idx, icol] + np.pi
) % (2 * np.pi)
elif name == "theta":
new_data[i, icol] = za
elif name == "phi":
new_data[i, icol] = az
else:
new_data[i, icol] = data[idx, icol]
else:
raise err
i += 1
delta_phi = phi_axis[1] - phi_axis[0]
data = new_data.reshape((theta_axis.size, phi_axis.size, -1)).transpose(
(2, 0, 1)
)
theta_data = data[theta_col]
phi_data = data[phi_col]
self.axis1_array = phi_axis
self.Naxes1 = self.axis1_array.size
self.axis2_array = theta_axis
self.Naxes2 = self.axis2_array.size
if self.beam_type == "power":
# type depends on whether cross pols are present
# (if so, complex, else float)
if complex in self._data_array.expected_type:
dtype_use = np.complex128
else:
dtype_use = np.float64
self.data_array = np.zeros(
self._data_array.expected_shape(self), dtype=dtype_use
)
else:
self.data_array = np.zeros(
self._data_array.expected_shape(self), dtype=np.complex128
)
if frequency is not None:
self.freq_array[0] = frequency
else:
self.freq_array[0] = self.name2freq(filename)
if rotate_pol:
# for second polarization, rotate by pi/2
rot_phi = phi_data + np.pi / 2
rot_phi[np.where(rot_phi >= 2 * np.pi)] -= 2 * np.pi
roll_rot_phi = np.roll(rot_phi, int((np.pi / 2) / delta_phi), axis=1)
if not np.allclose(roll_rot_phi, phi_data):
raise ValueError("Rotating by pi/2 failed")
# theta is not affected by the rotation
# get beam
if self.beam_type == "power":
power_beam1 = data[data_col] ** 2.0
self.data_array[0, 0, 0, 0, :, :] = power_beam1
if rotate_pol:
# rotate by pi/2 for second polarization
power_beam2 = np.roll(power_beam1, int((np.pi / 2) / delta_phi), axis=1)
self.data_array[0, 0, 1, 0, :, :] = power_beam2
else:
self.basis_vector_array = np.zeros(
(self.Naxes_vec, self.Ncomponents_vec, self.Naxes2, self.Naxes1)
)
self.basis_vector_array[0, 0, :, :] = 1.0
self.basis_vector_array[1, 1, :, :] = 1.0
theta_mag_col = np.where(np.array(column_names) == "abs(theta)")[0][0]
theta_phase_col = np.where(np.array(column_names) == "phase(theta)")[0][0]
phi_mag_col = np.where(np.array(column_names) == "abs(phi)")[0][0]
phi_phase_col = np.where(np.array(column_names) == "phase(phi)")[0][0]
theta_mag = data[theta_mag_col]
phi_mag = data[phi_mag_col]
theta_phase = data[theta_phase_col]
phi_phase = data[phi_phase_col]
theta_beam = theta_mag * np.exp(1j * theta_phase)
phi_beam = phi_mag * np.exp(1j * phi_phase)
self.data_array[0, 0, 0, 0, :, :] = phi_beam
self.data_array[1, 0, 0, 0, :, :] = theta_beam
if rotate_pol:
# rotate by pi/2 for second polarization
theta_beam2 = np.roll(theta_beam, int((np.pi / 2) / delta_phi), axis=1)
phi_beam2 = np.roll(phi_beam, int((np.pi / 2) / delta_phi), axis=1)
self.data_array[0, 0, 1, 0, :, :] = phi_beam2
self.data_array[1, 0, 1, 0, :, :] = theta_beam2
self.bandpass_array[0] = 1
if frequency is None:
warnings.warn(
"No frequency provided. Detected frequency is: "
"{freqs} Hz".format(freqs=self.freq_array)
)
if use_future_array_shapes:
self.use_future_array_shapes()
if run_check:
self.check(
check_extra=check_extra,
run_check_acceptability=run_check_acceptability,
check_auto_power=check_auto_power,
fix_auto_power=fix_auto_power,
)
Computing file changes ...