Revision 8cd68f3f650d00762f17885aeb455c7b4f8c0ac2 authored by Michael Friedlander on 19 September 2014, 17:06:45 UTC, committed by Michael Friedlander on 19 September 2014, 17:06:45 UTC
2 parent s 212867c + 92e52d7
Raw File
lsqr.m
function [ x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var ]...
  = lsqr( m, n, A, b, damp, atol, btol, conlim, itnlim, show )
%
%        [ x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var ]...
% = lsqr( m, n, A, b, damp, atol, btol, conlim, itnlim, show );
%
% LSQR solves  Ax = b  or  min ||b - Ax||_2  if damp = 0,
% or   min || (b)  -  (  A   )x ||   otherwise.
%          || (0)     (damp I)  ||2
% A  is an m by n matrix defined or a function handle of aprod( mode,x ),
% that performs the matrix-vector operations.
% If mode = 1,   aprod  must return  y = Ax   without altering x.
% If mode = 2,   aprod  must return  y = A'x  without altering x.

%-----------------------------------------------------------------------
% LSQR uses an iterative (conjugate-gradient-like) method.
% For further information, see 
% 1. C. C. Paige and M. A. Saunders (1982a).
%    LSQR: An algorithm for sparse linear equations and sparse least squares,
%    ACM TOMS 8(1), 43-71.
% 2. C. C. Paige and M. A. Saunders (1982b).
%    Algorithm 583.  LSQR: Sparse linear equations and least squares problems,
%    ACM TOMS 8(2), 195-209.
% 3. M. A. Saunders (1995).  Solution of sparse rectangular systems using
%    LSQR and CRAIG, BIT 35, 588-604.
%
% Input parameters:
% atol, btol  are stopping tolerances.  If both are 1.0e-9 (say),
%             the final residual norm should be accurate to about 9 digits.
%             (The final x will usually have fewer correct digits,
%             depending on cond(A) and the size of damp.)
% conlim      is also a stopping tolerance.  lsqr terminates if an estimate
%             of cond(A) exceeds conlim.  For compatible systems Ax = b,
%             conlim could be as large as 1.0e+12 (say).  For least-squares
%             problems, conlim should be less than 1.0e+8.
%             Maximum precision can be obtained by setting
%             atol = btol = conlim = zero, but the number of iterations
%             may then be excessive.
% itnlim      is an explicit limit on iterations (for safety).
% show = 1    gives an iteration log,
% show = 0    suppresses output.
%
% Output parameters:
% x           is the final solution.
% istop       gives the reason for termination.
% istop       = 1 means x is an approximate solution to Ax = b.
%             = 2 means x approximately solves the least-squares problem.
% r1norm      = norm(r), where r = b - Ax.
% r2norm      = sqrt( norm(r)^2  +  damp^2 * norm(x)^2 )
%             = r1norm if damp = 0.
% anorm       = estimate of Frobenius norm of Abar = [  A   ].
%                                                    [damp*I]
% acond       = estimate of cond(Abar).
% arnorm      = estimate of norm(A'*r - damp^2*x).
% xnorm       = norm(x).
% var         (if present) estimates all diagonals of (A'A)^{-1} (if damp=0)
%             or more generally (A'A + damp^2*I)^{-1}.
%             This is well defined if A has full column rank or damp > 0.
%             (Not sure what var means if rank(A) < n and damp = 0.)
%             
%
%        1990: Derived from Fortran 77 version of LSQR.
% 22 May 1992: bbnorm was used incorrectly.  Replaced by anorm.
% 26 Oct 1992: More input and output parameters added.
% 01 Sep 1994: Matrix-vector routine is now a parameter 'aprodname'.
%              Print log reformatted.
% 14 Jun 1997: show  added to allow printing or not.
% 30 Jun 1997: var   added as an optional output parameter.
% 07 Aug 2002: Output parameter rnorm replaced by r1norm and r2norm.
%              Michael Saunders, Systems Optimization Laboratory,
%              Dept of MS&E, Stanford University.
% 03 Jul 2007: Modified 'aprodname' to A, which can either be an m by n
%              matrix, or a function handle.
%              Ewout van den Berg, University of British Columbia
% 03 Jul 2007: Modified 'test2' condition, omitted 'test1'.
%              Ewout van den Berg, University of British Columbia
%-----------------------------------------------------------------------

%     Initialize.

msg=['The exact solution is  x = 0                              '
     'Ax - b is small enough, given atol, btol                  '
     'The least-squares solution is good enough, given atol     '
     'The estimate of cond(Abar) has exceeded conlim            '
     'Ax - b is small enough for this machine                   '
     'The least-squares solution is good enough for this machine'
     'Cond(Abar) seems to be too large for this machine         '
     'The iteration limit has been reached                      '];

wantvar= nargout >= 6;
if wantvar, var = zeros(n,1); end

if show
   disp(' ')
   disp('LSQR            Least-squares solution of  Ax = b')
   str1 = sprintf('The matrix A has %8g rows  and %8g cols', m, n);
   str2 = sprintf('damp = %20.14e    wantvar = %8g', damp,wantvar);
   str3 = sprintf('atol = %8.2e                 conlim = %8.2e', atol, conlim);
   str4 = sprintf('btol = %8.2e                 itnlim = %8g'  , btol, itnlim);
   disp(str1);   disp(str2);   disp(str3);   disp(str4);
end

itn    = 0;		 istop  = 0;        nstop  = 0;
ctol   = 0;		 if conlim > 0, ctol = 1/conlim; end;
anorm  = 0;		 acond  = 0;
dampsq = damp^2; ddnorm = 0;        res2   = 0;
xnorm  = 0;	     xxnorm = 0;        z      = 0;
cs2    = -1;     sn2    = 0;

% Set up the first vectors u and v for the bidiagonalization.

% These satisfy  beta*u = b,  alfa*v = A'u.

u      = b(1:m);	x    = zeros(n,1);
alfa   = 0;		beta = norm( u );
if beta > 0
   u = (1/beta) * u;	v = Aprod(u,2);
   alfa = norm( v );
end
if alfa > 0
   v = (1/alfa) * v;    w = v;
end

arnorm = alfa * beta;
if arnorm == 0
   if show, disp(msg(1,:)); end
   return
end
arnorm0= arnorm;

rhobar = alfa;		phibar = beta;		bnorm  = beta;
rnorm  = beta;
r1norm = rnorm;
r2norm = rnorm;
head1  = '   Itn      x(1)       r1norm     r2norm ';
head2  = ' Compatible   LS      Norm A   Cond A';

if show
   disp(' ')
   disp([head1 head2])
   test1  = 1;		test2  = alfa / beta;
   str1   = sprintf( '%6g %12.5e',        itn,   x(1) );
   str2   = sprintf( ' %10.3e %10.3e', r1norm, r2norm );
   str3   = sprintf( '  %8.1e %8.1e',   test1,  test2 );
   disp([str1 str2 str3])
end

%------------------------------------------------------------------
%     Main iteration loop.
%------------------------------------------------------------------
while itn < itnlim
      itn = itn + 1;
%     Perform the next step of the bidiagonalization to obtain the
%     next  beta, u, alfa, v.  These satisfy the relations
%                beta*u  =  a*v   -  alfa*u,
%                alfa*v  =  A'*u  -  beta*v.

      u    = Aprod(v,1)  -  alfa*u;
      beta = norm( u );
      if beta > 0
         u     = (1/beta) * u;
         anorm = norm([anorm alfa beta damp]);
         v     = Aprod(u, 2)  -  beta*v;
         alfa  = norm( v );
         if alfa > 0,  v = (1/alfa) * v; end
      end

%     Use a plane rotation to eliminate the damping parameter.
%     This alters the diagonal (rhobar) of the lower-bidiagonal matrix.

      rhobar1 = norm([rhobar damp]);
      cs1     = rhobar / rhobar1;
      sn1     = damp   / rhobar1;
      psi     = sn1 * phibar;
      phibar  = cs1 * phibar;

%     Use a plane rotation to eliminate the subdiagonal element (beta)
%     of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.

      rho     = norm([rhobar1 beta]);
      cs      =   rhobar1/ rho;
      sn      =   beta   / rho;
      theta   =   sn * alfa;
      rhobar  = - cs * alfa;
      phi     =   cs * phibar;
      phibar  =   sn * phibar;
      tau     =   sn * phi;

%     Update x and w.

      t1      =   phi  /rho;
      t2      = - theta/rho;
      dk      =   (1/rho)*w;

      x       = x      +  t1*w;
      w       = v      +  t2*w;
      ddnorm  = ddnorm +  norm(dk)^2;
      if wantvar, var = var  +  dk.*dk; end

%     Use a plane rotation on the right to eliminate the
%     super-diagonal element (theta) of the upper-bidiagonal matrix.
%     Then use the result to estimate  norm(x).

      delta   =   sn2 * rho;
      gambar  = - cs2 * rho;
      rhs     =   phi  -  delta * z;
      zbar    =   rhs / gambar;
      xnorm   =   sqrt(xxnorm + zbar^2);
      gamma   =   norm([gambar theta]);
      cs2     =   gambar / gamma;
      sn2     =   theta  / gamma;
      z       =   rhs    / gamma;
      xxnorm  =   xxnorm  +  z^2;

%     Test for convergence.
%     First, estimate the condition of the matrix  Abar,
%     and the norms of  rbar  and  Abar'rbar.

      acond   =   anorm * sqrt( ddnorm );
      res1    =   phibar^2;
      res2    =   res2  +  psi^2;
      rnorm   =   sqrt( res1 + res2 );
      arnorm  =   alfa * abs( tau );

%     07 Aug 2002:
%     Distinguish between
%        r1norm = ||b - Ax|| and
%        r2norm = rnorm in current code
%               = sqrt(r1norm^2 + damp^2*||x||^2).
%        Estimate r1norm from
%        r1norm = sqrt(r2norm^2 - damp^2*||x||^2).
%     Although there is cancellation, it might be accurate enough.

      r1sq    =   rnorm^2  -  dampsq * xxnorm;
      r1norm  =   sqrt( abs(r1sq) );   if r1sq < 0, r1norm = - r1norm; end
      r2norm  =   rnorm;

%     Now use these norms to estimate certain other quantities,
%     some of which will be small near a solution.

      test1   =   rnorm / bnorm;
      test2   =   arnorm / arnorm0;
%     test2   =   arnorm/( anorm * rnorm );
      test3   =       1 / acond;
      t1      =   test1 / (1    +  anorm * xnorm / bnorm);
      rtol    =   btol  +  atol *  anorm * xnorm / bnorm;

%     The following tests guard against extremely small values of
%     atol, btol  or  ctol.  (The user may have set any or all of
%     the parameters  atol, btol, conlim  to 0.)
%     The effect is equivalent to the normal tests using
%     atol = eps,  btol = eps,  conlim = 1/eps.

      if itn >= itnlim,   istop = 7; end
      if 1 + test3  <= 1, istop = 6; end
      if 1 + test2  <= 1, istop = 5; end
      if 1 + t1     <= 1, istop = 4; end

%     Allow for tolerances set by the user.

      if  test3 <= ctol,  istop = 3; end
      if  test2 <= atol,  istop = 2; end
%     if  test1 <= rtol,  istop = 1; end

%     See if it is time to print something.

      prnt = 0;
      if n     <= 40       , prnt = 1; end
      if itn   <= 10       , prnt = 1; end
      if itn   >= itnlim-10, prnt = 1; end
      if rem(itn,10) == 0  , prnt = 1; end
      if test3 <=  2*ctol  , prnt = 1; end
      if test2 <= 10*atol  , prnt = 1; end
%     if test1 <= 10*rtol  , prnt = 1; end
      if istop ~=  0       , prnt = 1; end

      if prnt == 1
         if show
            str1 = sprintf( '%6g %12.5e',        itn,   x(1) );
            str2 = sprintf( ' %10.3e %10.3e', r1norm, r2norm );
            str3 = sprintf( '  %8.1e %8.1e',   test1,  test2 );
            str4 = sprintf( ' %8.1e %8.1e',    anorm,  acond );
            disp([str1 str2 str3 str4])
         end
      end
      if istop > 0, break, end
end

%     End of iteration loop.
%     Print the stopping condition.

if show
   disp(' ')
   disp('LSQR finished')
   disp(msg(istop+1,:))
   disp(' ')
   str1 = sprintf( 'istop =%8g   r1norm =%8.1e',   istop, r1norm );
   str2 = sprintf( 'anorm =%8.1e   arnorm =%8.1e', anorm, arnorm );
   str3 = sprintf( 'itn   =%8g   r2norm =%8.1e',     itn, r2norm );
   str4 = sprintf( 'acond =%8.1e   xnorm  =%8.1e', acond, xnorm  );
   disp([str1 '   ' str2])
   disp([str3 '   ' str4])
   disp(' ')
end

%-----------------------------------------------------------------------
% End of lsqr.m
%-----------------------------------------------------------------------



function z = Aprod(x,mode)
   if mode == 1
      if isnumeric(A), z = A*x;
      else             z = A(x,1);
      end
   else
      if isnumeric(A), z = (x'*A)';
      else             z = A(x,2);
      end
   end
end % function Aprod

end
back to top