Revision 8e64ed039275cf1d3b66856277023c9548317bd8 authored by Jesper Nielsen on 11 April 2022, 09:22:07 UTC, committed by GitHub on 11 April 2022, 09:22:07 UTC
1 parent 3f74b5c
squared_exponentials.py
# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Type, Union
import tensorflow as tf
from .. import kernels
from .. import mean_functions as mfn
from ..inducing_variables import InducingPoints
from ..probability_distributions import DiagonalGaussian, Gaussian, MarkovGaussian
from ..utilities.ops import square_distance
from . import dispatch
from .expectations import expectation
NoneType: Type[None] = type(None)
@dispatch.expectation.register(Gaussian, kernels.SquaredExponential, NoneType, NoneType, NoneType)
def _expectation_gaussian_sqe(
p: Gaussian, kernel: kernels.SquaredExponential, _: None, __: None, ___: None, nghp: None = None
) -> tf.Tensor:
"""
Compute the expectation:
<diag(K_{X, X})>_p(X)
- K_{.,.} :: RBF kernel
:return: N
"""
return kernel(p.mu, full_cov=False)
@dispatch.expectation.register(
Gaussian, kernels.SquaredExponential, InducingPoints, NoneType, NoneType
)
def _expectation_gaussian_sqe_inducingpoints(
p: Gaussian,
kernel: kernels.SquaredExponential,
inducing_variable: InducingPoints,
_: None,
__: None,
nghp: None = None,
) -> tf.Tensor:
"""
Compute the expectation:
<K_{X, Z}>_p(X)
- K_{.,.} :: RBF kernel
:return: NxM
"""
# use only active dimensions
Xcov = kernel.slice_cov(p.cov)
Z, Xmu = kernel.slice(inducing_variable.Z, p.mu)
D = tf.shape(Xmu)[1]
lengthscales = kernel.lengthscales
if not kernel.ard:
lengthscales = tf.zeros((D,), dtype=lengthscales.dtype) + kernel.lengthscales
chol_L_plus_Xcov = tf.linalg.cholesky(tf.linalg.diag(lengthscales ** 2) + Xcov) # NxDxD
all_diffs = tf.transpose(Z) - tf.expand_dims(Xmu, 2) # NxDxM
exponent_mahalanobis = tf.linalg.triangular_solve(
chol_L_plus_Xcov, all_diffs, lower=True
) # NxDxM
exponent_mahalanobis = tf.reduce_sum(tf.square(exponent_mahalanobis), 1) # NxM
exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis) # NxM
sqrt_det_L = tf.reduce_prod(lengthscales)
sqrt_det_L_plus_Xcov = tf.exp(
tf.reduce_sum(tf.math.log(tf.linalg.diag_part(chol_L_plus_Xcov)), axis=1)
)
determinants = sqrt_det_L / sqrt_det_L_plus_Xcov # N
return kernel.variance * (determinants[:, None] * exponent_mahalanobis)
@dispatch.expectation.register(
Gaussian, mfn.Identity, NoneType, kernels.SquaredExponential, InducingPoints
)
def _expectation_gaussian__sqe_inducingpoints(
p: Gaussian,
mean: mfn.Identity,
_: None,
kernel: kernels.SquaredExponential,
inducing_variable: InducingPoints,
nghp: None = None,
) -> tf.Tensor:
"""
Compute the expectation:
expectation[n] = <x_n K_{x_n, Z}>_p(x_n)
- K_{.,.} :: RBF kernel
:return: NxDxM
"""
Xmu, Xcov = p.mu, p.cov
D = tf.shape(Xmu)[1]
lengthscales = kernel.lengthscales
if not kernel.ard:
lengthscales = tf.zeros((D,), dtype=lengthscales.dtype) + lengthscales
chol_L_plus_Xcov = tf.linalg.cholesky(tf.linalg.diag(lengthscales ** 2) + Xcov) # NxDxD
all_diffs = tf.transpose(inducing_variable.Z) - tf.expand_dims(Xmu, 2) # NxDxM
sqrt_det_L = tf.reduce_prod(lengthscales)
sqrt_det_L_plus_Xcov = tf.exp(
tf.reduce_sum(tf.math.log(tf.linalg.diag_part(chol_L_plus_Xcov)), axis=1)
)
determinants = sqrt_det_L / sqrt_det_L_plus_Xcov # N
exponent_mahalanobis = tf.linalg.cholesky_solve(chol_L_plus_Xcov, all_diffs) # NxDxM
non_exponent_term = tf.linalg.matmul(Xcov, exponent_mahalanobis, transpose_a=True)
non_exponent_term = tf.expand_dims(Xmu, 2) + non_exponent_term # NxDxM
exponent_mahalanobis = tf.reduce_sum(all_diffs * exponent_mahalanobis, 1) # NxM
exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis) # NxM
return (
kernel.variance
* (determinants[:, None] * exponent_mahalanobis)[:, None, :]
* non_exponent_term
)
@dispatch.expectation.register(
MarkovGaussian, mfn.Identity, NoneType, kernels.SquaredExponential, InducingPoints
)
def _expectation_markov__sqe_inducingpoints(
p: MarkovGaussian,
mean: mfn.Identity,
_: None,
kernel: kernels.SquaredExponential,
inducing_variable: InducingPoints,
nghp: None = None,
) -> tf.Tensor:
"""
Compute the expectation:
expectation[n] = <x_{n+1} K_{x_n, Z}>_p(x_{n:n+1})
- K_{.,.} :: RBF kernel
- p :: MarkovGaussian distribution (p.cov 2x(N+1)xDxD)
:return: NxDxM
"""
Xmu, Xcov = p.mu, p.cov
D = tf.shape(Xmu)[1]
lengthscales = kernel.lengthscales
if not kernel.ard:
lengthscales = tf.zeros((D,), dtype=lengthscales.dtype) + lengthscales
chol_L_plus_Xcov = tf.linalg.cholesky(tf.linalg.diag(lengthscales ** 2) + Xcov[0, :-1]) # NxDxD
all_diffs = tf.transpose(inducing_variable.Z) - tf.expand_dims(Xmu[:-1], 2) # NxDxM
sqrt_det_L = tf.reduce_prod(lengthscales)
sqrt_det_L_plus_Xcov = tf.exp(
tf.reduce_sum(tf.math.log(tf.linalg.diag_part(chol_L_plus_Xcov)), axis=1)
)
determinants = sqrt_det_L / sqrt_det_L_plus_Xcov # N
exponent_mahalanobis = tf.linalg.cholesky_solve(chol_L_plus_Xcov, all_diffs) # NxDxM
non_exponent_term = tf.linalg.matmul(Xcov[1, :-1], exponent_mahalanobis, transpose_a=True)
non_exponent_term = tf.expand_dims(Xmu[1:], 2) + non_exponent_term # NxDxM
exponent_mahalanobis = tf.reduce_sum(all_diffs * exponent_mahalanobis, 1) # NxM
exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis) # NxM
return (
kernel.variance
* (determinants[:, None] * exponent_mahalanobis)[:, None, :]
* non_exponent_term
)
@dispatch.expectation.register(
(Gaussian, DiagonalGaussian),
kernels.SquaredExponential,
InducingPoints,
kernels.SquaredExponential,
InducingPoints,
)
def _expectation_gaussian_sqe_inducingpoints__sqe_inducingpoints(
p: Union[Gaussian, DiagonalGaussian],
kern1: kernels.SquaredExponential,
feat1: InducingPoints,
kern2: kernels.SquaredExponential,
feat2: InducingPoints,
nghp: None = None,
) -> tf.Tensor:
"""
Compute the expectation:
expectation[n] = <Ka_{Z1, x_n} Kb_{x_n, Z2}>_p(x_n)
- Ka_{.,.}, Kb_{.,.} :: RBF kernels
Ka and Kb as well as Z1 and Z2 can differ from each other, but this is supported
only if the Gaussian p is Diagonal (p.cov NxD) and Ka, Kb have disjoint active_dims
in which case the joint expectations simplify into a product of expectations
:return: NxMxM
"""
if kern1.on_separate_dims(kern2) and isinstance(
p, DiagonalGaussian
): # no joint expectations required
eKxz1 = expectation(p, (kern1, feat1))
eKxz2 = expectation(p, (kern2, feat2))
return eKxz1[:, :, None] * eKxz2[:, None, :]
if feat1 != feat2 or kern1 != kern2:
raise NotImplementedError(
"The expectation over two kernels has only an "
"analytical implementation if both kernels are equal."
)
kernel = kern1
inducing_variable = feat1
# use only active dimensions
Xcov = kernel.slice_cov(tf.linalg.diag(p.cov) if isinstance(p, DiagonalGaussian) else p.cov)
Z, Xmu = kernel.slice(inducing_variable.Z, p.mu)
N = tf.shape(Xmu)[0]
D = tf.shape(Xmu)[1]
squared_lengthscales = kernel.lengthscales ** 2
if not kernel.ard:
zero_lengthscales = tf.zeros((D,), dtype=squared_lengthscales.dtype)
squared_lengthscales = squared_lengthscales + zero_lengthscales
sqrt_det_L = tf.reduce_prod(0.5 * squared_lengthscales) ** 0.5
C = tf.linalg.cholesky(0.5 * tf.linalg.diag(squared_lengthscales) + Xcov) # NxDxD
dets = sqrt_det_L / tf.exp(tf.reduce_sum(tf.math.log(tf.linalg.diag_part(C)), axis=1)) # N
C_inv_mu = tf.linalg.triangular_solve(C, tf.expand_dims(Xmu, 2), lower=True) # NxDx1
C_inv_z = tf.linalg.triangular_solve(
C, tf.tile(tf.expand_dims(0.5 * tf.transpose(Z), 0), [N, 1, 1]), lower=True
) # NxDxM
mu_CC_inv_mu = tf.expand_dims(tf.reduce_sum(tf.square(C_inv_mu), 1), 2) # Nx1x1
z_CC_inv_z = tf.reduce_sum(tf.square(C_inv_z), 1) # NxM
zm_CC_inv_zn = tf.linalg.matmul(C_inv_z, C_inv_z, transpose_a=True) # NxMxM
two_z_CC_inv_mu = 2 * tf.linalg.matmul(C_inv_z, C_inv_mu, transpose_a=True)[:, :, 0] # NxM
# NxMxM
exponent_mahalanobis = (
mu_CC_inv_mu
+ tf.expand_dims(z_CC_inv_z, 1)
+ tf.expand_dims(z_CC_inv_z, 2)
+ 2 * zm_CC_inv_zn
- tf.expand_dims(two_z_CC_inv_mu, 2)
- tf.expand_dims(two_z_CC_inv_mu, 1)
)
exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis) # NxMxM
# Compute sqrt(self(Z)) explicitly to prevent automatic gradient from
# being NaN sometimes, see pull request #615
kernel_sqrt = tf.exp(-0.25 * square_distance(Z / kernel.lengthscales, None))
return kernel.variance ** 2 * kernel_sqrt * tf.reshape(dets, [N, 1, 1]) * exponent_mahalanobis
Computing file changes ...