Revision 8ec7791bae1327b1c279c5cd6e929c3b12daaf0a authored by Michael Ellerman on 06 May 2021, 04:49:58 UTC, committed by Michael Ellerman on 14 May 2021, 07:27:36 UTC
The STF (store-to-load forwarding) barrier mitigation can be
enabled/disabled at runtime via a debugfs file (stf_barrier), which
causes the kernel to patch itself to enable/disable the relevant
mitigations.

However depending on which mitigation we're using, it may not be safe to
do that patching while other CPUs are active. For example the following
crash:

  User access of kernel address (c00000003fff5af0) - exploit attempt? (uid: 0)
  segfault (11) at c00000003fff5af0 nip 7fff8ad12198 lr 7fff8ad121f8 code 1
  code: 40820128 e93c00d0 e9290058 7c292840 40810058 38600000 4bfd9a81 e8410018
  code: 2c030006 41810154 3860ffb6 e9210098 <e94d8ff0> 7d295279 39400000 40820a3c

Shows that we returned to userspace without restoring the user r13
value, due to executing the partially patched STF exit code.

Fix it by doing the patching under stop machine. The CPUs that aren't
doing the patching will be spinning in the core of the stop machine
logic. That is currently sufficient for our purposes, because none of
the patching we do is to that code or anywhere in the vicinity.

Fixes: a048a07d7f45 ("powerpc/64s: Add support for a store forwarding barrier at kernel entry/exit")
Cc: stable@vger.kernel.org # v4.17+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210506044959.1298123-1-mpe@ellerman.id.au

1 parent da3bb20
Raw File
hmac.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Cryptographic API.
 *
 * HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * The HMAC implementation is derived from USAGI.
 * Copyright (c) 2002 Kazunori Miyazawa <miyazawa@linux-ipv6.org> / USAGI
 */

#include <crypto/hmac.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/string.h>

struct hmac_ctx {
	struct crypto_shash *hash;
};

static inline void *align_ptr(void *p, unsigned int align)
{
	return (void *)ALIGN((unsigned long)p, align);
}

static inline struct hmac_ctx *hmac_ctx(struct crypto_shash *tfm)
{
	return align_ptr(crypto_shash_ctx_aligned(tfm) +
			 crypto_shash_statesize(tfm) * 2,
			 crypto_tfm_ctx_alignment());
}

static int hmac_setkey(struct crypto_shash *parent,
		       const u8 *inkey, unsigned int keylen)
{
	int bs = crypto_shash_blocksize(parent);
	int ds = crypto_shash_digestsize(parent);
	int ss = crypto_shash_statesize(parent);
	char *ipad = crypto_shash_ctx_aligned(parent);
	char *opad = ipad + ss;
	struct hmac_ctx *ctx = align_ptr(opad + ss,
					 crypto_tfm_ctx_alignment());
	struct crypto_shash *hash = ctx->hash;
	SHASH_DESC_ON_STACK(shash, hash);
	unsigned int i;

	shash->tfm = hash;

	if (keylen > bs) {
		int err;

		err = crypto_shash_digest(shash, inkey, keylen, ipad);
		if (err)
			return err;

		keylen = ds;
	} else
		memcpy(ipad, inkey, keylen);

	memset(ipad + keylen, 0, bs - keylen);
	memcpy(opad, ipad, bs);

	for (i = 0; i < bs; i++) {
		ipad[i] ^= HMAC_IPAD_VALUE;
		opad[i] ^= HMAC_OPAD_VALUE;
	}

	return crypto_shash_init(shash) ?:
	       crypto_shash_update(shash, ipad, bs) ?:
	       crypto_shash_export(shash, ipad) ?:
	       crypto_shash_init(shash) ?:
	       crypto_shash_update(shash, opad, bs) ?:
	       crypto_shash_export(shash, opad);
}

static int hmac_export(struct shash_desc *pdesc, void *out)
{
	struct shash_desc *desc = shash_desc_ctx(pdesc);

	return crypto_shash_export(desc, out);
}

static int hmac_import(struct shash_desc *pdesc, const void *in)
{
	struct shash_desc *desc = shash_desc_ctx(pdesc);
	struct hmac_ctx *ctx = hmac_ctx(pdesc->tfm);

	desc->tfm = ctx->hash;

	return crypto_shash_import(desc, in);
}

static int hmac_init(struct shash_desc *pdesc)
{
	return hmac_import(pdesc, crypto_shash_ctx_aligned(pdesc->tfm));
}

static int hmac_update(struct shash_desc *pdesc,
		       const u8 *data, unsigned int nbytes)
{
	struct shash_desc *desc = shash_desc_ctx(pdesc);

	return crypto_shash_update(desc, data, nbytes);
}

static int hmac_final(struct shash_desc *pdesc, u8 *out)
{
	struct crypto_shash *parent = pdesc->tfm;
	int ds = crypto_shash_digestsize(parent);
	int ss = crypto_shash_statesize(parent);
	char *opad = crypto_shash_ctx_aligned(parent) + ss;
	struct shash_desc *desc = shash_desc_ctx(pdesc);

	return crypto_shash_final(desc, out) ?:
	       crypto_shash_import(desc, opad) ?:
	       crypto_shash_finup(desc, out, ds, out);
}

static int hmac_finup(struct shash_desc *pdesc, const u8 *data,
		      unsigned int nbytes, u8 *out)
{

	struct crypto_shash *parent = pdesc->tfm;
	int ds = crypto_shash_digestsize(parent);
	int ss = crypto_shash_statesize(parent);
	char *opad = crypto_shash_ctx_aligned(parent) + ss;
	struct shash_desc *desc = shash_desc_ctx(pdesc);

	return crypto_shash_finup(desc, data, nbytes, out) ?:
	       crypto_shash_import(desc, opad) ?:
	       crypto_shash_finup(desc, out, ds, out);
}

static int hmac_init_tfm(struct crypto_shash *parent)
{
	struct crypto_shash *hash;
	struct shash_instance *inst = shash_alg_instance(parent);
	struct crypto_shash_spawn *spawn = shash_instance_ctx(inst);
	struct hmac_ctx *ctx = hmac_ctx(parent);

	hash = crypto_spawn_shash(spawn);
	if (IS_ERR(hash))
		return PTR_ERR(hash);

	parent->descsize = sizeof(struct shash_desc) +
			   crypto_shash_descsize(hash);

	ctx->hash = hash;
	return 0;
}

static void hmac_exit_tfm(struct crypto_shash *parent)
{
	struct hmac_ctx *ctx = hmac_ctx(parent);
	crypto_free_shash(ctx->hash);
}

static int hmac_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct shash_instance *inst;
	struct crypto_shash_spawn *spawn;
	struct crypto_alg *alg;
	struct shash_alg *salg;
	u32 mask;
	int err;
	int ds;
	int ss;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
	if (err)
		return err;

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;
	spawn = shash_instance_ctx(inst);

	err = crypto_grab_shash(spawn, shash_crypto_instance(inst),
				crypto_attr_alg_name(tb[1]), 0, mask);
	if (err)
		goto err_free_inst;
	salg = crypto_spawn_shash_alg(spawn);
	alg = &salg->base;

	/* The underlying hash algorithm must not require a key */
	err = -EINVAL;
	if (crypto_shash_alg_needs_key(salg))
		goto err_free_inst;

	ds = salg->digestsize;
	ss = salg->statesize;
	if (ds > alg->cra_blocksize ||
	    ss < alg->cra_blocksize)
		goto err_free_inst;

	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
	if (err)
		goto err_free_inst;

	inst->alg.base.cra_priority = alg->cra_priority;
	inst->alg.base.cra_blocksize = alg->cra_blocksize;
	inst->alg.base.cra_alignmask = alg->cra_alignmask;

	ss = ALIGN(ss, alg->cra_alignmask + 1);
	inst->alg.digestsize = ds;
	inst->alg.statesize = ss;

	inst->alg.base.cra_ctxsize = sizeof(struct hmac_ctx) +
				     ALIGN(ss * 2, crypto_tfm_ctx_alignment());

	inst->alg.init = hmac_init;
	inst->alg.update = hmac_update;
	inst->alg.final = hmac_final;
	inst->alg.finup = hmac_finup;
	inst->alg.export = hmac_export;
	inst->alg.import = hmac_import;
	inst->alg.setkey = hmac_setkey;
	inst->alg.init_tfm = hmac_init_tfm;
	inst->alg.exit_tfm = hmac_exit_tfm;

	inst->free = shash_free_singlespawn_instance;

	err = shash_register_instance(tmpl, inst);
	if (err) {
err_free_inst:
		shash_free_singlespawn_instance(inst);
	}
	return err;
}

static struct crypto_template hmac_tmpl = {
	.name = "hmac",
	.create = hmac_create,
	.module = THIS_MODULE,
};

static int __init hmac_module_init(void)
{
	return crypto_register_template(&hmac_tmpl);
}

static void __exit hmac_module_exit(void)
{
	crypto_unregister_template(&hmac_tmpl);
}

subsys_initcall(hmac_module_init);
module_exit(hmac_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("HMAC hash algorithm");
MODULE_ALIAS_CRYPTO("hmac");
back to top