https://github.com/torvalds/linux
Revision 9230a0b65b47fe6856c4468ec0175c4987e5bede authored by Dave Chinner on 20 November 2018, 06:50:08 UTC, committed by Darrick J. Wong on 21 November 2018, 18:10:53 UTC
Long saga. There have been days spent following this through dead end
after dead end in multi-GB event traces. This morning, after writing
a trace-cmd wrapper that enabled me to be more selective about XFS
trace points, I discovered that I could get just enough essential
tracepoints enabled that there was a 50:50 chance the fsx config
would fail at ~115k ops. If it didn't fail at op 115547, I stopped
fsx at op 115548 anyway.

That gave me two traces - one where the problem manifested, and one
where it didn't. After refining the traces to have the necessary
information, I found that in the failing case there was a real
extent in the COW fork compared to an unwritten extent in the
working case.

Walking back through the two traces to the point where the CWO fork
extents actually diverged, I found that the bad case had an extra
unwritten extent in it. This is likely because the bug it led me to
had triggered multiple times in those 115k ops, leaving stray
COW extents around. What I saw was a COW delalloc conversion to an
unwritten extent (as they should always be through
xfs_iomap_write_allocate()) resulted in a /written extent/:

xfs_writepage:        dev 259:0 ino 0x83 pgoff 0x17000 size 0x79a00 offset 0 length 0
xfs_iext_remove:      dev 259:0 ino 0x83 state RC|LF|RF|COW cur 0xffff888247b899c0/2 offset 32 block 152 count 20 flag 1 caller xfs_bmap_add_extent_delay_real
xfs_bmap_pre_update:  dev 259:0 ino 0x83 state RC|LF|RF|COW cur 0xffff888247b899c0/1 offset 1 block 4503599627239429 count 31 flag 0 caller xfs_bmap_add_extent_delay_real
xfs_bmap_post_update: dev 259:0 ino 0x83 state RC|LF|RF|COW cur 0xffff888247b899c0/1 offset 1 block 121 count 51 flag 0 caller xfs_bmap_add_ex

Basically, Cow fork before:

	0 1            32          52
	+H+DDDDDDDDDDDD+UUUUUUUUUUU+
	   PREV		RIGHT

COW delalloc conversion allocates:

	  1	       32
	  +uuuuuuuuuuuu+
	  NEW

And the result according to the xfs_bmap_post_update trace was:

	0 1            32          52
	+H+wwwwwwwwwwwwwwwwwwwwwwww+
	   PREV

Which is clearly wrong - it should be a merged unwritten extent,
not an unwritten extent.

That lead me to look at the LEFT_FILLING|RIGHT_FILLING|RIGHT_CONTIG
case in xfs_bmap_add_extent_delay_real(), and sure enough, there's
the bug.

It takes the old delalloc extent (PREV) and adds the length of the
RIGHT extent to it, takes the start block from NEW, removes the
RIGHT extent and then updates PREV with the new extent.

What it fails to do is update PREV.br_state. For delalloc, this is
always XFS_EXT_NORM, while in this case we are converting the
delayed allocation to unwritten, so it needs to be updated to
XFS_EXT_UNWRITTEN. This LF|RF|RC case does not do this, and so
the resultant extent is always written.

And that's the bug I've been chasing for a week - a bmap btree bug,
not a reflink/dedupe/copy_file_range bug, but a BMBT bug introduced
with the recent in core extent tree scalability enhancements.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1 parent 2c30717
Raw File
Tip revision: 9230a0b65b47fe6856c4468ec0175c4987e5bede authored by Dave Chinner on 20 November 2018, 06:50:08 UTC
xfs: delalloc -> unwritten COW fork allocation can go wrong
Tip revision: 9230a0b
blk-ioc.c
// SPDX-License-Identifier: GPL-2.0
/*
 * Functions related to io context handling
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/sched/task.h>

#include "blk.h"

/*
 * For io context allocations
 */
static struct kmem_cache *iocontext_cachep;

/**
 * get_io_context - increment reference count to io_context
 * @ioc: io_context to get
 *
 * Increment reference count to @ioc.
 */
void get_io_context(struct io_context *ioc)
{
	BUG_ON(atomic_long_read(&ioc->refcount) <= 0);
	atomic_long_inc(&ioc->refcount);
}
EXPORT_SYMBOL(get_io_context);

static void icq_free_icq_rcu(struct rcu_head *head)
{
	struct io_cq *icq = container_of(head, struct io_cq, __rcu_head);

	kmem_cache_free(icq->__rcu_icq_cache, icq);
}

/*
 * Exit an icq. Called with ioc locked for blk-mq, and with both ioc
 * and queue locked for legacy.
 */
static void ioc_exit_icq(struct io_cq *icq)
{
	struct elevator_type *et = icq->q->elevator->type;

	if (icq->flags & ICQ_EXITED)
		return;

	if (et->uses_mq && et->ops.mq.exit_icq)
		et->ops.mq.exit_icq(icq);
	else if (!et->uses_mq && et->ops.sq.elevator_exit_icq_fn)
		et->ops.sq.elevator_exit_icq_fn(icq);

	icq->flags |= ICQ_EXITED;
}

/*
 * Release an icq. Called with ioc locked for blk-mq, and with both ioc
 * and queue locked for legacy.
 */
static void ioc_destroy_icq(struct io_cq *icq)
{
	struct io_context *ioc = icq->ioc;
	struct request_queue *q = icq->q;
	struct elevator_type *et = q->elevator->type;

	lockdep_assert_held(&ioc->lock);

	radix_tree_delete(&ioc->icq_tree, icq->q->id);
	hlist_del_init(&icq->ioc_node);
	list_del_init(&icq->q_node);

	/*
	 * Both setting lookup hint to and clearing it from @icq are done
	 * under queue_lock.  If it's not pointing to @icq now, it never
	 * will.  Hint assignment itself can race safely.
	 */
	if (rcu_access_pointer(ioc->icq_hint) == icq)
		rcu_assign_pointer(ioc->icq_hint, NULL);

	ioc_exit_icq(icq);

	/*
	 * @icq->q might have gone away by the time RCU callback runs
	 * making it impossible to determine icq_cache.  Record it in @icq.
	 */
	icq->__rcu_icq_cache = et->icq_cache;
	call_rcu(&icq->__rcu_head, icq_free_icq_rcu);
}

/*
 * Slow path for ioc release in put_io_context().  Performs double-lock
 * dancing to unlink all icq's and then frees ioc.
 */
static void ioc_release_fn(struct work_struct *work)
{
	struct io_context *ioc = container_of(work, struct io_context,
					      release_work);
	unsigned long flags;

	/*
	 * Exiting icq may call into put_io_context() through elevator
	 * which will trigger lockdep warning.  The ioc's are guaranteed to
	 * be different, use a different locking subclass here.  Use
	 * irqsave variant as there's no spin_lock_irq_nested().
	 */
	spin_lock_irqsave_nested(&ioc->lock, flags, 1);

	while (!hlist_empty(&ioc->icq_list)) {
		struct io_cq *icq = hlist_entry(ioc->icq_list.first,
						struct io_cq, ioc_node);
		struct request_queue *q = icq->q;

		if (spin_trylock(q->queue_lock)) {
			ioc_destroy_icq(icq);
			spin_unlock(q->queue_lock);
		} else {
			spin_unlock_irqrestore(&ioc->lock, flags);
			cpu_relax();
			spin_lock_irqsave_nested(&ioc->lock, flags, 1);
		}
	}

	spin_unlock_irqrestore(&ioc->lock, flags);

	kmem_cache_free(iocontext_cachep, ioc);
}

/**
 * put_io_context - put a reference of io_context
 * @ioc: io_context to put
 *
 * Decrement reference count of @ioc and release it if the count reaches
 * zero.
 */
void put_io_context(struct io_context *ioc)
{
	unsigned long flags;
	bool free_ioc = false;

	if (ioc == NULL)
		return;

	BUG_ON(atomic_long_read(&ioc->refcount) <= 0);

	/*
	 * Releasing ioc requires reverse order double locking and we may
	 * already be holding a queue_lock.  Do it asynchronously from wq.
	 */
	if (atomic_long_dec_and_test(&ioc->refcount)) {
		spin_lock_irqsave(&ioc->lock, flags);
		if (!hlist_empty(&ioc->icq_list))
			queue_work(system_power_efficient_wq,
					&ioc->release_work);
		else
			free_ioc = true;
		spin_unlock_irqrestore(&ioc->lock, flags);
	}

	if (free_ioc)
		kmem_cache_free(iocontext_cachep, ioc);
}
EXPORT_SYMBOL(put_io_context);

/**
 * put_io_context_active - put active reference on ioc
 * @ioc: ioc of interest
 *
 * Undo get_io_context_active().  If active reference reaches zero after
 * put, @ioc can never issue further IOs and ioscheds are notified.
 */
void put_io_context_active(struct io_context *ioc)
{
	struct elevator_type *et;
	unsigned long flags;
	struct io_cq *icq;

	if (!atomic_dec_and_test(&ioc->active_ref)) {
		put_io_context(ioc);
		return;
	}

	/*
	 * Need ioc lock to walk icq_list and q lock to exit icq.  Perform
	 * reverse double locking.  Read comment in ioc_release_fn() for
	 * explanation on the nested locking annotation.
	 */
retry:
	spin_lock_irqsave_nested(&ioc->lock, flags, 1);
	hlist_for_each_entry(icq, &ioc->icq_list, ioc_node) {
		if (icq->flags & ICQ_EXITED)
			continue;

		et = icq->q->elevator->type;
		if (et->uses_mq) {
			ioc_exit_icq(icq);
		} else {
			if (spin_trylock(icq->q->queue_lock)) {
				ioc_exit_icq(icq);
				spin_unlock(icq->q->queue_lock);
			} else {
				spin_unlock_irqrestore(&ioc->lock, flags);
				cpu_relax();
				goto retry;
			}
		}
	}
	spin_unlock_irqrestore(&ioc->lock, flags);

	put_io_context(ioc);
}

/* Called by the exiting task */
void exit_io_context(struct task_struct *task)
{
	struct io_context *ioc;

	task_lock(task);
	ioc = task->io_context;
	task->io_context = NULL;
	task_unlock(task);

	atomic_dec(&ioc->nr_tasks);
	put_io_context_active(ioc);
}

static void __ioc_clear_queue(struct list_head *icq_list)
{
	unsigned long flags;

	while (!list_empty(icq_list)) {
		struct io_cq *icq = list_entry(icq_list->next,
					       struct io_cq, q_node);
		struct io_context *ioc = icq->ioc;

		spin_lock_irqsave(&ioc->lock, flags);
		ioc_destroy_icq(icq);
		spin_unlock_irqrestore(&ioc->lock, flags);
	}
}

/**
 * ioc_clear_queue - break any ioc association with the specified queue
 * @q: request_queue being cleared
 *
 * Walk @q->icq_list and exit all io_cq's.
 */
void ioc_clear_queue(struct request_queue *q)
{
	LIST_HEAD(icq_list);

	spin_lock_irq(q->queue_lock);
	list_splice_init(&q->icq_list, &icq_list);

	if (q->mq_ops) {
		spin_unlock_irq(q->queue_lock);
		__ioc_clear_queue(&icq_list);
	} else {
		__ioc_clear_queue(&icq_list);
		spin_unlock_irq(q->queue_lock);
	}
}

int create_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node)
{
	struct io_context *ioc;
	int ret;

	ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO,
				    node);
	if (unlikely(!ioc))
		return -ENOMEM;

	/* initialize */
	atomic_long_set(&ioc->refcount, 1);
	atomic_set(&ioc->nr_tasks, 1);
	atomic_set(&ioc->active_ref, 1);
	spin_lock_init(&ioc->lock);
	INIT_RADIX_TREE(&ioc->icq_tree, GFP_ATOMIC);
	INIT_HLIST_HEAD(&ioc->icq_list);
	INIT_WORK(&ioc->release_work, ioc_release_fn);

	/*
	 * Try to install.  ioc shouldn't be installed if someone else
	 * already did or @task, which isn't %current, is exiting.  Note
	 * that we need to allow ioc creation on exiting %current as exit
	 * path may issue IOs from e.g. exit_files().  The exit path is
	 * responsible for not issuing IO after exit_io_context().
	 */
	task_lock(task);
	if (!task->io_context &&
	    (task == current || !(task->flags & PF_EXITING)))
		task->io_context = ioc;
	else
		kmem_cache_free(iocontext_cachep, ioc);

	ret = task->io_context ? 0 : -EBUSY;

	task_unlock(task);

	return ret;
}

/**
 * get_task_io_context - get io_context of a task
 * @task: task of interest
 * @gfp_flags: allocation flags, used if allocation is necessary
 * @node: allocation node, used if allocation is necessary
 *
 * Return io_context of @task.  If it doesn't exist, it is created with
 * @gfp_flags and @node.  The returned io_context has its reference count
 * incremented.
 *
 * This function always goes through task_lock() and it's better to use
 * %current->io_context + get_io_context() for %current.
 */
struct io_context *get_task_io_context(struct task_struct *task,
				       gfp_t gfp_flags, int node)
{
	struct io_context *ioc;

	might_sleep_if(gfpflags_allow_blocking(gfp_flags));

	do {
		task_lock(task);
		ioc = task->io_context;
		if (likely(ioc)) {
			get_io_context(ioc);
			task_unlock(task);
			return ioc;
		}
		task_unlock(task);
	} while (!create_task_io_context(task, gfp_flags, node));

	return NULL;
}
EXPORT_SYMBOL(get_task_io_context);

/**
 * ioc_lookup_icq - lookup io_cq from ioc
 * @ioc: the associated io_context
 * @q: the associated request_queue
 *
 * Look up io_cq associated with @ioc - @q pair from @ioc.  Must be called
 * with @q->queue_lock held.
 */
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q)
{
	struct io_cq *icq;

	lockdep_assert_held(q->queue_lock);

	/*
	 * icq's are indexed from @ioc using radix tree and hint pointer,
	 * both of which are protected with RCU.  All removals are done
	 * holding both q and ioc locks, and we're holding q lock - if we
	 * find a icq which points to us, it's guaranteed to be valid.
	 */
	rcu_read_lock();
	icq = rcu_dereference(ioc->icq_hint);
	if (icq && icq->q == q)
		goto out;

	icq = radix_tree_lookup(&ioc->icq_tree, q->id);
	if (icq && icq->q == q)
		rcu_assign_pointer(ioc->icq_hint, icq);	/* allowed to race */
	else
		icq = NULL;
out:
	rcu_read_unlock();
	return icq;
}
EXPORT_SYMBOL(ioc_lookup_icq);

/**
 * ioc_create_icq - create and link io_cq
 * @ioc: io_context of interest
 * @q: request_queue of interest
 * @gfp_mask: allocation mask
 *
 * Make sure io_cq linking @ioc and @q exists.  If icq doesn't exist, they
 * will be created using @gfp_mask.
 *
 * The caller is responsible for ensuring @ioc won't go away and @q is
 * alive and will stay alive until this function returns.
 */
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
			     gfp_t gfp_mask)
{
	struct elevator_type *et = q->elevator->type;
	struct io_cq *icq;

	/* allocate stuff */
	icq = kmem_cache_alloc_node(et->icq_cache, gfp_mask | __GFP_ZERO,
				    q->node);
	if (!icq)
		return NULL;

	if (radix_tree_maybe_preload(gfp_mask) < 0) {
		kmem_cache_free(et->icq_cache, icq);
		return NULL;
	}

	icq->ioc = ioc;
	icq->q = q;
	INIT_LIST_HEAD(&icq->q_node);
	INIT_HLIST_NODE(&icq->ioc_node);

	/* lock both q and ioc and try to link @icq */
	spin_lock_irq(q->queue_lock);
	spin_lock(&ioc->lock);

	if (likely(!radix_tree_insert(&ioc->icq_tree, q->id, icq))) {
		hlist_add_head(&icq->ioc_node, &ioc->icq_list);
		list_add(&icq->q_node, &q->icq_list);
		if (et->uses_mq && et->ops.mq.init_icq)
			et->ops.mq.init_icq(icq);
		else if (!et->uses_mq && et->ops.sq.elevator_init_icq_fn)
			et->ops.sq.elevator_init_icq_fn(icq);
	} else {
		kmem_cache_free(et->icq_cache, icq);
		icq = ioc_lookup_icq(ioc, q);
		if (!icq)
			printk(KERN_ERR "cfq: icq link failed!\n");
	}

	spin_unlock(&ioc->lock);
	spin_unlock_irq(q->queue_lock);
	radix_tree_preload_end();
	return icq;
}

static int __init blk_ioc_init(void)
{
	iocontext_cachep = kmem_cache_create("blkdev_ioc",
			sizeof(struct io_context), 0, SLAB_PANIC, NULL);
	return 0;
}
subsys_initcall(blk_ioc_init);
back to top