Revision 93d2175d3d31f11ba04fcfa0e9a496a1b4bc8b34 authored by Yinghai Lu on 14 May 2011, 01:06:17 UTC, committed by Linus Torvalds on 17 May 2011, 01:33:35 UTC
During pci remove/rescan testing found:

  pci 0000:c0:03.0: PCI bridge to [bus c4-c9]
  pci 0000:c0:03.0:   bridge window [io  0x1000-0x0fff]
  pci 0000:c0:03.0:   bridge window [mem 0xf0000000-0xf00fffff]
  pci 0000:c0:03.0:   bridge window [mem 0xfc180000000-0xfc197ffffff 64bit pref]
  pci 0000:c0:03.0: device not available (can't reserve [io  0x1000-0x0fff])
  pci 0000:c0:03.0: Error enabling bridge (-22), continuing
  pci 0000:c0:03.0: enabling bus mastering
  pci 0000:c0:03.0: setting latency timer to 64
  pcieport 0000:c0:03.0: device not available (can't reserve [io  0x1000-0x0fff])
  pcieport: probe of 0000:c0:03.0 failed with error -22

This bug was caused by commit c8adf9a3e873 ("PCI: pre-allocate
additional resources to devices only after successful allocation of
essential resources.")

After that commit, pci_hotplug_io_size is changed to additional_io_size
from minium size.  So it will not go through resource_size(res) != 0
path, and will not be reset.

The root cause is: pci_bridge_check_ranges will set RESOURCE_IO flag for
pci bridge, and later if children do not need IO resource.  those bridge
resources will not need to be allocated.  but flags is still there.
that will confuse the the pci_enable_bridges later.

related code:

   static void assign_requested_resources_sorted(struct resource_list *head,
                                    struct resource_list_x *fail_head)
   {
           struct resource *res;
           struct resource_list *list;
           int idx;

           for (list = head->next; list; list = list->next) {
                   res = list->res;
                   idx = res - &list->dev->resource[0];
                   if (resource_size(res) && pci_assign_resource(list->dev, idx)) {
   ...
                           reset_resource(res);
                   }
           }
   }

At last, We have to clear the flags in pbus_size_mem/io when requested
size == 0 and !add_head.  becasue this case it will not go through
adjust_resources_sorted().

Just make size1 = size0 when !add_head. it will make flags get cleared.

At the same time when requested size == 0, add_size != 0, will still
have in head and add_list.  because we do not clear the flags for it.

After this, we will get right result:

  pci 0000:c0:03.0: PCI bridge to [bus c4-c9]
  pci 0000:c0:03.0:   bridge window [io  disabled]
  pci 0000:c0:03.0:   bridge window [mem 0xf0000000-0xf00fffff]
  pci 0000:c0:03.0:   bridge window [mem 0xfc180000000-0xfc197ffffff 64bit pref]
  pci 0000:c0:03.0: enabling bus mastering
  pci 0000:c0:03.0: setting latency timer to 64
  pcieport 0000:c0:03.0: setting latency timer to 64
  pcieport 0000:c0:03.0: irq 160 for MSI/MSI-X
  pcieport 0000:c0:03.0: Signaling PME through PCIe PME interrupt
  pci 0000:c4:00.0: Signaling PME through PCIe PME interrupt
  pcie_pme 0000:c0:03.0:pcie01: service driver pcie_pme loaded
  aer 0000:c0:03.0:pcie02: service driver aer loaded
  pciehp 0000:c0:03.0:pcie04: Hotplug Controller:

v3: more simple fix. also fix one typo in pbus_size_mem

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent df8d06a
Raw File
irq.c
/* MN10300 Arch-specific interrupt handling
 *
 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <linux/cpumask.h>
#include <asm/setup.h>
#include <asm/serial-regs.h>

unsigned long __mn10300_irq_enabled_epsw[NR_CPUS] __cacheline_aligned_in_smp = {
	[0 ... NR_CPUS - 1] = EPSW_IE | EPSW_IM_7
};
EXPORT_SYMBOL(__mn10300_irq_enabled_epsw);

#ifdef CONFIG_SMP
static char irq_affinity_online[NR_IRQS] = {
	[0 ... NR_IRQS - 1] = 0
};

#define NR_IRQ_WORDS	((NR_IRQS + 31) / 32)
static unsigned long irq_affinity_request[NR_IRQ_WORDS] = {
	[0 ... NR_IRQ_WORDS - 1] = 0
};
#endif  /* CONFIG_SMP */

atomic_t irq_err_count;

/*
 * MN10300 interrupt controller operations
 */
static void mn10300_cpupic_ack(struct irq_data *d)
{
	unsigned int irq = d->irq;
	unsigned long flags;
	u16 tmp;

	flags = arch_local_cli_save();
	GxICR_u8(irq) = GxICR_DETECT;
	tmp = GxICR(irq);
	arch_local_irq_restore(flags);
}

static void __mask_and_set_icr(unsigned int irq,
			       unsigned int mask, unsigned int set)
{
	unsigned long flags;
	u16 tmp;

	flags = arch_local_cli_save();
	tmp = GxICR(irq);
	GxICR(irq) = (tmp & mask) | set;
	tmp = GxICR(irq);
	arch_local_irq_restore(flags);
}

static void mn10300_cpupic_mask(struct irq_data *d)
{
	__mask_and_set_icr(d->irq, GxICR_LEVEL, 0);
}

static void mn10300_cpupic_mask_ack(struct irq_data *d)
{
	unsigned int irq = d->irq;
#ifdef CONFIG_SMP
	unsigned long flags;
	u16 tmp;

	flags = arch_local_cli_save();

	if (!test_and_clear_bit(irq, irq_affinity_request)) {
		tmp = GxICR(irq);
		GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT;
		tmp = GxICR(irq);
	} else {
		u16 tmp2;
		tmp = GxICR(irq);
		GxICR(irq) = (tmp & GxICR_LEVEL);
		tmp2 = GxICR(irq);

		irq_affinity_online[irq] =
			any_online_cpu(*d->affinity);
		CROSS_GxICR(irq, irq_affinity_online[irq]) =
			(tmp & (GxICR_LEVEL | GxICR_ENABLE)) | GxICR_DETECT;
		tmp = CROSS_GxICR(irq, irq_affinity_online[irq]);
	}

	arch_local_irq_restore(flags);
#else  /* CONFIG_SMP */
	__mask_and_set_icr(irq, GxICR_LEVEL, GxICR_DETECT);
#endif /* CONFIG_SMP */
}

static void mn10300_cpupic_unmask(struct irq_data *d)
{
	__mask_and_set_icr(d->irq, GxICR_LEVEL, GxICR_ENABLE);
}

static void mn10300_cpupic_unmask_clear(struct irq_data *d)
{
	unsigned int irq = d->irq;
	/* the MN10300 PIC latches its interrupt request bit, even after the
	 * device has ceased to assert its interrupt line and the interrupt
	 * channel has been disabled in the PIC, so for level-triggered
	 * interrupts we need to clear the request bit when we re-enable */
#ifdef CONFIG_SMP
	unsigned long flags;
	u16 tmp;

	flags = arch_local_cli_save();

	if (!test_and_clear_bit(irq, irq_affinity_request)) {
		tmp = GxICR(irq);
		GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT;
		tmp = GxICR(irq);
	} else {
		tmp = GxICR(irq);

		irq_affinity_online[irq] = any_online_cpu(*d->affinity);
		CROSS_GxICR(irq, irq_affinity_online[irq]) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT;
		tmp = CROSS_GxICR(irq, irq_affinity_online[irq]);
	}

	arch_local_irq_restore(flags);
#else  /* CONFIG_SMP */
	__mask_and_set_icr(irq, GxICR_LEVEL, GxICR_ENABLE | GxICR_DETECT);
#endif /* CONFIG_SMP */
}

#ifdef CONFIG_SMP
static int
mn10300_cpupic_setaffinity(struct irq_data *d, const struct cpumask *mask,
			   bool force)
{
	unsigned long flags;
	int err;

	flags = arch_local_cli_save();

	/* check irq no */
	switch (d->irq) {
	case TMJCIRQ:
	case RESCHEDULE_IPI:
	case CALL_FUNC_SINGLE_IPI:
	case LOCAL_TIMER_IPI:
	case FLUSH_CACHE_IPI:
	case CALL_FUNCTION_NMI_IPI:
	case DEBUGGER_NMI_IPI:
#ifdef CONFIG_MN10300_TTYSM0
	case SC0RXIRQ:
	case SC0TXIRQ:
#ifdef CONFIG_MN10300_TTYSM0_TIMER8
	case TM8IRQ:
#elif CONFIG_MN10300_TTYSM0_TIMER2
	case TM2IRQ:
#endif /* CONFIG_MN10300_TTYSM0_TIMER8 */
#endif /* CONFIG_MN10300_TTYSM0 */

#ifdef CONFIG_MN10300_TTYSM1
	case SC1RXIRQ:
	case SC1TXIRQ:
#ifdef CONFIG_MN10300_TTYSM1_TIMER12
	case TM12IRQ:
#elif CONFIG_MN10300_TTYSM1_TIMER9
	case TM9IRQ:
#elif CONFIG_MN10300_TTYSM1_TIMER3
	case TM3IRQ:
#endif /* CONFIG_MN10300_TTYSM1_TIMER12 */
#endif /* CONFIG_MN10300_TTYSM1 */

#ifdef CONFIG_MN10300_TTYSM2
	case SC2RXIRQ:
	case SC2TXIRQ:
	case TM10IRQ:
#endif /* CONFIG_MN10300_TTYSM2 */
		err = -1;
		break;

	default:
		set_bit(d->irq, irq_affinity_request);
		err = 0;
		break;
	}

	arch_local_irq_restore(flags);
	return err;
}
#endif /* CONFIG_SMP */

/*
 * MN10300 PIC level-triggered IRQ handling.
 *
 * The PIC has no 'ACK' function per se.  It is possible to clear individual
 * channel latches, but each latch relatches whether or not the channel is
 * masked, so we need to clear the latch when we unmask the channel.
 *
 * Also for this reason, we don't supply an ack() op (it's unused anyway if
 * mask_ack() is provided), and mask_ack() just masks.
 */
static struct irq_chip mn10300_cpu_pic_level = {
	.name			= "cpu_l",
	.irq_disable		= mn10300_cpupic_mask,
	.irq_enable		= mn10300_cpupic_unmask_clear,
	.irq_ack		= NULL,
	.irq_mask		= mn10300_cpupic_mask,
	.irq_mask_ack		= mn10300_cpupic_mask,
	.irq_unmask		= mn10300_cpupic_unmask_clear,
#ifdef CONFIG_SMP
	.irq_set_affinity	= mn10300_cpupic_setaffinity,
#endif
};

/*
 * MN10300 PIC edge-triggered IRQ handling.
 *
 * We use the latch clearing function of the PIC as the 'ACK' function.
 */
static struct irq_chip mn10300_cpu_pic_edge = {
	.name			= "cpu_e",
	.irq_disable		= mn10300_cpupic_mask,
	.irq_enable		= mn10300_cpupic_unmask,
	.irq_ack		= mn10300_cpupic_ack,
	.irq_mask		= mn10300_cpupic_mask,
	.irq_mask_ack		= mn10300_cpupic_mask_ack,
	.irq_unmask		= mn10300_cpupic_unmask,
#ifdef CONFIG_SMP
	.irq_set_affinity	= mn10300_cpupic_setaffinity,
#endif
};

/*
 * 'what should we do if we get a hw irq event on an illegal vector'.
 * each architecture has to answer this themselves.
 */
void ack_bad_irq(int irq)
{
	printk(KERN_WARNING "unexpected IRQ trap at vector %02x\n", irq);
}

/*
 * change the level at which an IRQ executes
 * - must not be called whilst interrupts are being processed!
 */
void set_intr_level(int irq, u16 level)
{
	BUG_ON(in_interrupt());

	__mask_and_set_icr(irq, GxICR_ENABLE, level);
}

/*
 * mark an interrupt to be ACK'd after interrupt handlers have been run rather
 * than before
 * - see Documentation/mn10300/features.txt
 */
void mn10300_set_lateack_irq_type(int irq)
{
	irq_set_chip_and_handler(irq, &mn10300_cpu_pic_level,
				 handle_level_irq);
}

/*
 * initialise the interrupt system
 */
void __init init_IRQ(void)
{
	int irq;

	for (irq = 0; irq < NR_IRQS; irq++)
		if (irq_get_chip(irq) == &no_irq_chip)
			/* due to the PIC latching interrupt requests, even
			 * when the IRQ is disabled, IRQ_PENDING is superfluous
			 * and we can use handle_level_irq() for edge-triggered
			 * interrupts */
			irq_set_chip_and_handler(irq, &mn10300_cpu_pic_edge,
						 handle_level_irq);

	unit_init_IRQ();
}

/*
 * handle normal device IRQs
 */
asmlinkage void do_IRQ(void)
{
	unsigned long sp, epsw, irq_disabled_epsw, old_irq_enabled_epsw;
	unsigned int cpu_id = smp_processor_id();
	int irq;

	sp = current_stack_pointer();
	BUG_ON(sp - (sp & ~(THREAD_SIZE - 1)) < STACK_WARN);

	/* make sure local_irq_enable() doesn't muck up the interrupt priority
	 * setting in EPSW */
	old_irq_enabled_epsw = __mn10300_irq_enabled_epsw[cpu_id];
	local_save_flags(epsw);
	__mn10300_irq_enabled_epsw[cpu_id] = EPSW_IE | (EPSW_IM & epsw);
	irq_disabled_epsw = EPSW_IE | MN10300_CLI_LEVEL;

#ifdef CONFIG_MN10300_WD_TIMER
	__IRQ_STAT(cpu_id, __irq_count)++;
#endif

	irq_enter();

	for (;;) {
		/* ask the interrupt controller for the next IRQ to process
		 * - the result we get depends on EPSW.IM
		 */
		irq = IAGR & IAGR_GN;
		if (!irq)
			break;

		local_irq_restore(irq_disabled_epsw);

		generic_handle_irq(irq >> 2);

		/* restore IRQ controls for IAGR access */
		local_irq_restore(epsw);
	}

	__mn10300_irq_enabled_epsw[cpu_id] = old_irq_enabled_epsw;

	irq_exit();
}

/*
 * Display interrupt management information through /proc/interrupts
 */
int arch_show_interrupts(struct seq_file *p, int prec)
{
#ifdef CONFIG_MN10300_WD_TIMER
	int j;

	seq_printf(p, "%*s: ", prec, "NMI");
	for (j = 0; j < NR_CPUS; j++)
		if (cpu_online(j))
			seq_printf(p, "%10u ", nmi_count(j));
	seq_putc(p, '\n');
#endif

	seq_printf(p, "%*s: ", prec, "ERR");
	seq_printf(p, "%10u\n", atomic_read(&irq_err_count));
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
void migrate_irqs(void)
{
	int irq;
	unsigned int self, new;
	unsigned long flags;

	self = smp_processor_id();
	for (irq = 0; irq < NR_IRQS; irq++) {
		struct irq_data *data = irq_get_irq_data(irq);

		if (irqd_is_per_cpu(data))
			continue;

		if (cpu_isset(self, data->affinity) &&
		    !cpus_intersects(irq_affinity[irq], cpu_online_map)) {
			int cpu_id;
			cpu_id = first_cpu(cpu_online_map);
			cpu_set(cpu_id, data->affinity);
		}
		/* We need to operate irq_affinity_online atomically. */
		arch_local_cli_save(flags);
		if (irq_affinity_online[irq] == self) {
			u16 x, tmp;

			x = GxICR(irq);
			GxICR(irq) = x & GxICR_LEVEL;
			tmp = GxICR(irq);

			new = any_online_cpu(data->affinity);
			irq_affinity_online[irq] = new;

			CROSS_GxICR(irq, new) =
				(x & GxICR_LEVEL) | GxICR_DETECT;
			tmp = CROSS_GxICR(irq, new);

			x &= GxICR_LEVEL | GxICR_ENABLE;
			if (GxICR(irq) & GxICR_REQUEST)
				x |= GxICR_REQUEST | GxICR_DETECT;
			CROSS_GxICR(irq, new) = x;
			tmp = CROSS_GxICR(irq, new);
		}
		arch_local_irq_restore(flags);
	}
}
#endif /* CONFIG_HOTPLUG_CPU */
back to top