https://github.com/MarkMoHR/virtual_sketching
Revision 958efe45a9120b9d467ba7701efba28c11e38f8f authored by Your Name on 21 August 2021, 08:13 UTC, committed by Your Name on 21 August 2021, 08:13 UTC
1 parent 149a4be
Raw File
Tip revision: 958efe45a9120b9d467ba7701efba28c11e38f8f authored by Your Name on 21 August 2021, 08:13 UTC
Added bilibili links
Tip revision: 958efe4
test_rough_sketch_simplification.py
import numpy as np
import os
import tensorflow as tf
from six.moves import range
from PIL import Image
import argparse

import hyper_parameters as hparams
from model_common_test import DiffPastingV3, VirtualSketchingModel
from utils import reset_graph, load_checkpoint, update_hyperparams, draw, \
    save_seq_data, image_pasting_v3_testing, draw_strokes
from dataset_utils import load_dataset_testing

os.environ['CUDA_VISIBLE_DEVICES'] = '0'


def move_cursor_to_undrawn(current_pos_list, input_image_, patch_size,
                           move_min_dist, move_max_dist, trial_times=20):
    """
    :param current_pos_list: (select_times, 1, 2), [0.0, 1.0)
    :param input_image_: (1, image_size, image_size, 3), [0-stroke, 1-BG]
    :return: new_cursor_pos: (select_times, 1, 2), [0.0, 1.0)
    """

    def crop_patch(image, center, image_size, crop_size):
        x0 = center[0] - crop_size // 2
        x1 = x0 + crop_size
        y0 = center[1] - crop_size // 2
        y1 = y0 + crop_size
        x0 = max(0, min(x0, image_size))
        y0 = max(0, min(y0, image_size))
        x1 = max(0, min(x1, image_size))
        y1 = max(0, min(y1, image_size))
        patch = image[y0:y1, x0:x1]
        return patch

    def isvalid_cursor(input_img, cursor, raster_size, image_size):
        # input_img: (image_size, image_size, 3), [0.0-BG, 1.0-stroke]
        cursor_large = cursor * float(image_size)
        cursor_large = np.round(cursor_large).astype(np.int32)
        input_crop_patch = crop_patch(input_img, cursor_large, image_size, raster_size)
        if np.sum(input_crop_patch) > 0.0:
            return True
        else:
            return False

    def randomly_move_cursor(cursor_position, img_size, min_dist_p, max_dist_p):
        # cursor_position: (2), [0.0, 1.0)
        cursor_pos_large = cursor_position * img_size
        min_dist = int(min_dist_p / 2.0 * img_size)
        max_dist = int(max_dist_p / 2.0 * img_size)
        rand_cursor_offset = np.random.randint(min_dist, max_dist, size=cursor_pos_large.shape)
        rand_cursor_offset_sign = np.random.randint(0, 1 + 1, size=cursor_pos_large.shape)
        rand_cursor_offset_sign[rand_cursor_offset_sign == 0] = -1
        rand_cursor_offset = rand_cursor_offset * rand_cursor_offset_sign

        new_cursor_pos_large = cursor_pos_large + rand_cursor_offset
        new_cursor_pos_large = np.minimum(np.maximum(new_cursor_pos_large, 0), img_size - 1)  # (2), large-level
        new_cursor_pos = new_cursor_pos_large.astype(np.float32) / float(img_size)
        return new_cursor_pos

    input_image = 1.0 - input_image_[0]  # (image_size, image_size, 3), [0-BG, 1-stroke]
    img_size = input_image.shape[0]

    new_cursor_pos = []
    for cursor_i in range(current_pos_list.shape[0]):
        curr_cursor = current_pos_list[cursor_i][0]

        for trial_i in range(trial_times):
            new_cursor = randomly_move_cursor(curr_cursor, img_size, move_min_dist, move_max_dist)  # (2), [0.0, 1.0)

            if isvalid_cursor(input_image, new_cursor, patch_size, img_size) or trial_i == trial_times - 1:
                new_cursor_pos.append(new_cursor)
                break

    assert len(new_cursor_pos) == current_pos_list.shape[0]
    new_cursor_pos = np.expand_dims(np.stack(new_cursor_pos, axis=0), axis=1)  # (select_times, 1, 2), [0.0, 1.0)
    return new_cursor_pos


def sample(sess, model, input_photos, init_cursor, image_size, init_len, seq_lens,
           state_dependent, pasting_func, round_stop_state_num,
           min_dist_p, max_dist_p):
    """Samples a sequence from a pre-trained model."""
    select_times = 1
    curr_canvas = np.zeros(dtype=np.float32,
                           shape=(select_times, image_size, image_size))  # [0.0-BG, 1.0-stroke]

    initial_state = sess.run(model.initial_state)

    params_list = [[] for _ in range(select_times)]
    state_raw_list = [[] for _ in range(select_times)]
    state_soft_list = [[] for _ in range(select_times)]
    window_size_list = [[] for _ in range(select_times)]

    round_cursor_list = []
    round_length_real_list = []

    input_photos_tiles = np.tile(input_photos, (select_times, 1, 1, 1))

    for cursor_i, seq_len in enumerate(seq_lens):
        if cursor_i == 0:
            cursor_pos = np.squeeze(init_cursor, axis=0)  # (select_times, 1, 2)
        else:
            cursor_pos = move_cursor_to_undrawn(cursor_pos, input_photos, model.hps.raster_size,
                                                min_dist_p, max_dist_p)  # (select_times, 1, 2)
            round_cursor_list.append(cursor_pos)

        prev_state = initial_state
        prev_width = np.stack([model.hps.min_width for _ in range(select_times)], axis=0)
        prev_scaling = np.ones((select_times), dtype=np.float32)  # (N)
        prev_window_size = np.ones((select_times), dtype=np.float32) * model.hps.raster_size  # (N)

        continuous_one_state_num = 0

        for i in range(seq_len):
            if not state_dependent and i % init_len == 0:
                prev_state = initial_state

            curr_window_size = prev_scaling * prev_window_size  # (N)
            curr_window_size = np.maximum(curr_window_size, model.hps.min_window_size)
            curr_window_size = np.minimum(curr_window_size, image_size)

            feed = {
                model.initial_state: prev_state,
                model.input_photo: input_photos_tiles,
                model.curr_canvas_hard: curr_canvas.copy(),
                model.cursor_position: cursor_pos,
                model.image_size: image_size,
                model.init_width: prev_width,
                model.init_scaling: prev_scaling,
                model.init_window_size: prev_window_size,
            }

            o_other_params_list, o_pen_list, o_pred_params_list, next_state_list = \
                sess.run([model.other_params, model.pen_ras, model.pred_params, model.final_state], feed_dict=feed)
            # o_other_params: (N, 6), o_pen: (N, 2), pred_params: (N, 1, 7), next_state: (N, 1024)
            # o_other_params: [tanh*2, sigmoid*2, tanh*2, sigmoid*2]

            idx_eos_list = np.argmax(o_pen_list, axis=1)  # (N)

            output_i = 0
            idx_eos = idx_eos_list[output_i]

            eos = [0, 0]
            eos[idx_eos] = 1

            other_params = o_other_params_list[output_i].tolist()  # (6)
            params_list[output_i].append([eos[1]] + other_params)
            state_raw_list[output_i].append(o_pen_list[output_i][1])
            state_soft_list[output_i].append(o_pred_params_list[output_i, 0, 0])
            window_size_list[output_i].append(curr_window_size[output_i])

            # draw the stroke and add to the canvas
            x1y1, x2y2, width2 = o_other_params_list[output_i, 0:2], o_other_params_list[output_i, 2:4], \
                                 o_other_params_list[output_i, 4]
            x0y0 = np.zeros_like(x2y2)  # (2), [-1.0, 1.0]
            x0y0 = np.divide(np.add(x0y0, 1.0), 2.0)  # (2), [0.0, 1.0]
            x2y2 = np.divide(np.add(x2y2, 1.0), 2.0)  # (2), [0.0, 1.0]
            widths = np.stack([prev_width[output_i], width2], axis=0)  # (2)
            o_other_params_proc = np.concatenate([x0y0, x1y1, x2y2, widths], axis=-1).tolist()  # (8)

            if idx_eos == 0:
                f = o_other_params_proc + [1.0, 1.0]
                pred_stroke_img = draw(f)  # (raster_size, raster_size), [0.0-stroke, 1.0-BG]
                pred_stroke_img_large = image_pasting_v3_testing(1.0 - pred_stroke_img,
                                                                  cursor_pos[output_i, 0],
                                                                  image_size,
                                                                  curr_window_size[output_i],
                                                                  pasting_func, sess)  # [0.0-BG, 1.0-stroke]
                curr_canvas[output_i] += pred_stroke_img_large  # [0.0-BG, 1.0-stroke]

                continuous_one_state_num = 0
            else:
                continuous_one_state_num += 1

            curr_canvas = np.clip(curr_canvas, 0.0, 1.0)

            next_width = o_other_params_list[:, 4]  # (N)
            next_scaling = o_other_params_list[:, 5]
            next_window_size = next_scaling * curr_window_size  # (N)
            next_window_size = np.maximum(next_window_size, model.hps.min_window_size)
            next_window_size = np.minimum(next_window_size, image_size)

            prev_state = next_state_list
            prev_width = next_width * curr_window_size / next_window_size  # (N,)
            prev_scaling = next_scaling  # (N)
            prev_window_size = curr_window_size

            # update cursor_pos based on hps.cursor_type
            new_cursor_offsets = o_other_params_list[:, 2:4] * (
                        np.expand_dims(curr_window_size, axis=-1) / 2.0)  # (N, 2), patch-level
            new_cursor_offset_next = new_cursor_offsets

            # important!!!
            new_cursor_offset_next = np.concatenate([new_cursor_offset_next[:, 1:2], new_cursor_offset_next[:, 0:1]],
                                                    axis=-1)

            cursor_pos_large = cursor_pos * float(image_size)
            stroke_position_next = cursor_pos_large[:, 0, :] + new_cursor_offset_next  # (N, 2), large-level

            if model.hps.cursor_type == 'next':
                cursor_pos_large = stroke_position_next  # (N, 2), large-level
            else:
                raise Exception('Unknown cursor_type')

            cursor_pos_large = np.minimum(np.maximum(cursor_pos_large, 0.0),
                                          float(image_size - 1))  # (N, 2), large-level
            cursor_pos_large = np.expand_dims(cursor_pos_large, axis=1)  # (N, 1, 2)
            cursor_pos = cursor_pos_large / float(image_size)

            if continuous_one_state_num >= round_stop_state_num or i == seq_len - 1:
                round_length_real_list.append(i + 1)
                break

    return params_list, state_raw_list, state_soft_list, curr_canvas, window_size_list, \
           round_cursor_list, round_length_real_list


def main_testing(test_image_base_dir, test_dataset, test_image_name,
                 sampling_base_dir, model_base_dir, model_name,
                 sampling_num,
                 min_dist_p, max_dist_p,
                 longer_infer_lens, round_stop_state_num,
                 draw_seq=False, draw_order=False,
                 state_dependent=True):
    model_params_default = hparams.get_default_hparams_rough()
    model_params = update_hyperparams(model_params_default, model_base_dir, model_name, infer_dataset=test_dataset)

    [test_set, eval_hps_model, sample_hps_model] = \
        load_dataset_testing(test_image_base_dir, test_dataset, test_image_name, model_params)

    test_image_raw_name = test_image_name[:test_image_name.find('.')]
    model_dir = os.path.join(model_base_dir, model_name)

    reset_graph()
    sampling_model = VirtualSketchingModel(sample_hps_model)

    # differentiable pasting graph
    paste_v3_func = DiffPastingV3(sample_hps_model.raster_size)

    tfconfig = tf.ConfigProto()
    tfconfig.gpu_options.allow_growth = True
    sess = tf.InteractiveSession(config=tfconfig)
    sess.run(tf.global_variables_initializer())

    # loads the weights from checkpoint into our model
    snapshot_step = load_checkpoint(sess, model_dir, gen_model_pretrain=True)
    print('snapshot_step', snapshot_step)
    sampling_dir = os.path.join(sampling_base_dir, test_dataset + '__' + model_name)
    os.makedirs(sampling_dir, exist_ok=True)

    for sampling_i in range(sampling_num):
        input_photos, init_cursors, test_image_size = test_set.get_test_image()
        # input_photos: (1, image_size, image_size, 3), [0-stroke, 1-BG]
        # init_cursors: (N, 1, 2), in size [0.0, 1.0)

        print()
        print(test_image_name, ', image_size:', test_image_size, ', sampling_i:', sampling_i)
        print('Processing ...')

        if init_cursors.ndim == 3:
            init_cursors = np.expand_dims(init_cursors, axis=0)

        input_photos = input_photos[0:1, :, :, :]

        ori_img = (input_photos.copy()[0] * 255.0).astype(np.uint8)
        ori_img_png = Image.fromarray(ori_img, 'RGB')
        ori_img_png.save(os.path.join(sampling_dir, test_image_raw_name + '_input.png'), 'PNG')

        # decoding for sampling
        strokes_raw_out_list, states_raw_out_list, states_soft_out_list, pred_imgs_out, \
        window_size_out_list, round_new_cursors, round_new_lengths = sample(
            sess, sampling_model, input_photos, init_cursors, test_image_size,
            eval_hps_model.max_seq_len, longer_infer_lens, state_dependent, paste_v3_func,
            round_stop_state_num, min_dist_p, max_dist_p)
        # pred_imgs_out: (N, H, W), [0.0-BG, 1.0-stroke]

        print('## round_lengths:', len(round_new_lengths), ':', round_new_lengths)

        output_i = 0
        strokes_raw_out = np.stack(strokes_raw_out_list[output_i], axis=0)
        states_raw_out = states_raw_out_list[output_i]
        states_soft_out = states_soft_out_list[output_i]
        window_size_out = window_size_out_list[output_i]

        multi_cursors = [init_cursors[0, output_i, 0]]
        for c_i in range(len(round_new_cursors)):
            best_cursor = round_new_cursors[c_i][output_i, 0]  # (2)
            multi_cursors.append(best_cursor)
        assert len(multi_cursors) == len(round_new_lengths)

        print('strokes_raw_out', strokes_raw_out.shape)

        clean_states_soft_out = np.array(states_soft_out)  # (N)

        flag_list = strokes_raw_out[:, 0].astype(np.int32)  # (N)
        drawing_len = len(flag_list) - np.sum(flag_list)
        assert drawing_len >= 0

        # print('    flag  raw\t soft\t x1\t\t y1\t\t x2\t\t y2\t\t r2\t\t s2')
        for i in range(strokes_raw_out.shape[0]):
            flag, x1, y1, x2, y2, r2, s2 = strokes_raw_out[i]
            win_size = window_size_out[i]
            out_format = '#%d: %d  | %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f'
            out_values = (i, flag, states_raw_out[i], clean_states_soft_out[i], x1, y1, x2, y2, r2, s2)
            out_log = out_format % out_values
            # print(out_log)

        print('Saving results ...')
        save_seq_data(sampling_dir, test_image_raw_name + '_' + str(sampling_i),
                      strokes_raw_out, multi_cursors,
                      test_image_size, round_new_lengths, eval_hps_model.min_width)

        draw_strokes(strokes_raw_out, sampling_dir, test_image_raw_name + '_' + str(sampling_i) + '_pred.png',
                     ori_img, test_image_size,
                     multi_cursors, round_new_lengths, eval_hps_model.min_width, eval_hps_model.cursor_type,
                     sample_hps_model.raster_size, sample_hps_model.min_window_size,
                     sess,
                     pasting_func=paste_v3_func,
                     save_seq=draw_seq, draw_order=draw_order)


def main(model_name, test_image_name, sampling_num):
    test_dataset = 'rough_sketches'
    test_image_base_dir = 'sample_inputs'

    sampling_base_dir = 'outputs/sampling'
    model_base_dir = 'outputs/snapshot'

    state_dependent = False
    longer_infer_lens = [128 for _ in range(10)]
    round_stop_state_num = 12
    min_dist_p = 0.3
    max_dist_p = 0.9

    draw_seq = False
    draw_color_order = True

    # set numpy output to something sensible
    np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)

    main_testing(test_image_base_dir, test_dataset, test_image_name,
                 sampling_base_dir, model_base_dir, model_name, sampling_num,
                 min_dist_p=min_dist_p, max_dist_p=max_dist_p,
                 draw_seq=draw_seq, draw_order=draw_color_order,
                 state_dependent=state_dependent, longer_infer_lens=longer_infer_lens,
                 round_stop_state_num=round_stop_state_num)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--input', '-i', type=str, default='', help="The test image name.")
    parser.add_argument('--model', '-m', type=str, default='pretrain_rough_sketches', help="The trained model.")
    parser.add_argument('--sample', '-s', type=int, default=1, help="The number of outputs.")
    args = parser.parse_args()

    assert args.input != ''
    assert args.sample > 0

    main(args.model, args.input, args.sample)
back to top