https://github.com/drmsmith/microbiomeR
Revision 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC, committed by GitHub on 02 July 2021, 10:56:52 UTC
1 parent a649afc
Tip revision: 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC
update readme
update readme
Tip revision: 9741c7a
ODEs.R
### Model 1: susceptible-colonized model (MS equation 1)
ODEs_model1 <- function(t, states, params_pre){
## update parameter values:
# (1/3): extract parameter values for compound parameters
alpha = params_pre['alpha'];
gamma = params_pre['gamma']; c = params_pre['c'];
a = params_pre['a']; r_R = params_pre['r_R']; theta_C = params_pre['theta_C'];
# (2/3): calculate compound parameter values
alpha_R = as.numeric(alpha*(1-a*(1-r_R))); # endogenous acquisition only when not exposed to effective antibiotic therapy
gamma_R = as.numeric(gamma*(1+c)); # higher clearance rate in C_R due to cost of resistance
sigma_R = as.numeric(a*(1-r_R)*theta_C); # antibiotic pathogen clearance
# (3/3): update parameter list
params <- params_pre;
params['alpha_R'] <- alpha_R;
params['gamma_R'] <- gamma_R;
params['sigma_R'] <- sigma_R;
### write derivatives
with(as.list(c(states, params)),{
dS <- (1-(f_C*f_R))*mu - (S*mu) - S*(beta*C_R + alpha_R) + C_R*(gamma_R + sigma_R)
dC_R <- (f_C*f_R)*mu - (C_R*mu) + S*(beta*C_R + alpha_R) - C_R*(gamma_R + sigma_R)
# incidence
dC_S_trans <- 0
dC_S_acq <- 0
dC_R_trans <- beta*(C_R)*S
dC_R_acq <- alpha_R*(S)
dC_R_hgt <- 0
# return derivatives
der <- c(dS, dC_R, dC_S_trans, dC_S_acq, dC_R_trans, dC_R_acq, dC_R_hgt)
list(der)
})
}
### Model 2: strain competition model (MS equation 3)
ODEs_model2 <- function(t, states, params_pre){
## update parameter values:
# (1/3): extract parameter values needed for compound parameters
alpha = params_pre['alpha'];
gamma = params_pre['gamma']; c = params_pre['c'];
a = params_pre['a']; r_S = params_pre['r_S']; r_R = params_pre['r_R']; theta_C = params_pre['theta_C'];
# (2/3): calculate compound parameter values
alpha_S = as.numeric(alpha*(1-a*(1-r_S)));# endogenous acquisition only when not exposed to effective antibiotic therapy
alpha_R = as.numeric(alpha*(1-a*(1-r_R)));
gamma_S = as.numeric(gamma);
gamma_R = as.numeric(gamma*(1+c)); # higher clearance rate in C_R due to cost of resistance
sigma_S = as.numeric(a*(1-r_S)*theta_C); # antibiotic pathogen clearance
sigma_R = as.numeric(a*(1-r_R)*theta_C);
# (3/3): update parameter list
params <- params_pre
params['alpha_S'] <- alpha_S; params['alpha_R'] <- alpha_R;
params['gamma_S'] <- gamma_S; params['gamma_R'] <- gamma_R;
params['sigma_S'] <- sigma_S; params['sigma_R'] <- sigma_R;
### write derivatives
with(as.list(c(states, params)),{
dS <- (1-f_C)*mu - (S*mu) - S*(beta*(C_S+C_R) + alpha_S + alpha_R) + C_S*(gamma_S + sigma_S) + C_R*(gamma_R + sigma_R)
dC_S <- f_C*(1-f_R)*mu - (C_S*mu) + S*(beta*C_S + alpha_S) - C_S*(gamma_S + sigma_S)
dC_R <- f_C*f_R*mu - (C_R*mu) + S*(beta*C_R + alpha_R) - C_R*(gamma_R + sigma_R)
# incidence
dC_S_trans <- beta*(C_S)*S
dC_S_acq <- alpha_S*(S)
dC_R_trans <- beta*(C_R)*S
dC_R_acq <- alpha_R*(S)
dC_R_hgt <- 0
# return derivatives
der <- c(dS, dC_S, dC_R,
dC_S_trans, dC_S_acq, dC_R_trans, dC_R_acq, dC_R_hgt)
list(der)
})
}
### Model 3: microbiome competition model (MS equation 4)
ODEs_model3 <- function(t, states, params_pre){
## update parameter values:
# (1/3): extract parameter values needed for compound parameters
beta = params_pre['beta']; epsilon = params_pre['epsilon']
alpha = params_pre['alpha']; phi = params_pre['phi'];
gamma = params_pre['gamma']; c = params_pre['c']; eta = params_pre['eta'];
a = params_pre['a']; r_R = params_pre['r_R'];
theta_C = params_pre['theta_C']; theta_m = params_pre['theta_m']; delta = params_pre['delta'];
# (2/3): calculate compound parameter values
beta_epsilon = as.numeric(beta*(1-epsilon)) # transmission rate reduced by colonization resistance
alpha_R = as.numeric(alpha*(1-a*(1-r_R))); # endogenous acquisition only when not exposed to effective antibiotic therapy
alpha_R_phi = as.numeric(alpha_R*phi); # endogenous acquisition augmented by ecological release
gamma_R = as.numeric(gamma*(1+c)); # higher clearance rate in C_R due to cost of resistance
gamma_R_eta = as.numeric(gamma_R*(1-eta)) # clearance rate lowered during dysbiosis (less resource competition)
sigma_R = as.numeric(a*(1-r_R)*theta_C); # antibiotic pathogen clearance
sigma_m = as.numeric(a*theta_m) # antibiotic microbiome dysbiosis
delta = as.numeric(delta*(1-a)) # microbiome recovery
# (3/3): update parameter list
params <- params_pre
params['beta_epsilon'] <- beta_epsilon;
params['alpha_R'] <- alpha_R; params['alpha_R_phi'] <- alpha_R_phi;
params['gamma_R'] <- gamma_R; params['gamma_R_eta'] <- gamma_R_eta;
params['sigma_R'] <- sigma_R; params['sigma_m'] <- sigma_m;
params['delta'] <- delta;
### write derivatives
with(as.list(c(states, params)),{
dS_e <- (1-(f_C*f_R))*(1-f_d)*mu - (S_e*mu) - S_e*(beta_epsilon*(C_R_e+C_R_d) + alpha_R + sigma_m) + S_d*delta + C_R_e*(gamma_R + sigma_R)
dS_d <- (1-(f_C*f_R))*f_d*mu - (S_d*mu) + S_e*sigma_m - S_d*(beta*(C_R_e+C_R_d) + alpha_R_phi + delta) + C_R_d*(gamma_R_eta + sigma_R)
dC_R_e <- f_C*f_R*(1-f_d)*mu - (C_R_e*mu) + S_e*(beta_epsilon*(C_R_e+C_R_d) + alpha_R) - C_R_e*(gamma_R + sigma_m + sigma_R) + (C_R_d*delta)
dC_R_d <- f_C*f_R*f_d*mu - (C_R_d*mu) + S_d*(beta*(C_R_e + C_R_d) + alpha_R_phi) + C_R_e*sigma_m - C_R_d*(gamma_R_eta + delta + sigma_R)
# incidence
dC_S_trans <- 0
dC_S_acq <- 0
dC_R_trans <-
beta_epsilon*(C_R_e + C_R_d)*S_e +
beta*(C_R_e + C_R_d)*S_d
dC_R_acq <-
alpha_R*(S_e)+
alpha_R_phi*(S_d)
dC_R_hgt <- 0
# return derivatives
der <- c(dS_e, dS_d, dC_R_e, dC_R_d,
dC_S_trans, dC_S_acq, dC_R_trans, dC_R_acq, dC_R_hgt)
list(der)
})
}
### Model 4: two-strain microbiome competition model (MS equation 6)
ODEs_model4 <- function(t, states, params_pre){
## update parameter values:
# (1/3): extract parameter values needed for compound parameters
beta = params_pre['beta']; epsilon = params_pre['epsilon']
alpha = params_pre['alpha']; phi = params_pre['phi'];
gamma = params_pre['gamma']; c = params_pre['c']; eta = params_pre['eta'];
a = params_pre['a']; r_S = params_pre['r_S']; r_R = params_pre['r_R'];
theta_C = params_pre['theta_C']; theta_m = params_pre['theta_m']; delta = params_pre['delta']
# (2/3): calculate compound parameter values
beta_epsilon = as.numeric(beta*(1-epsilon)) # transmission rate reduced by colonization resistance
alpha_S = as.numeric(alpha*(1-a*(1-r_S))); # endogenous acquisition only when not exposed to effective antibiotic therapy
alpha_R = as.numeric(alpha*(1-a*(1-r_R)));
alpha_S_phi = as.numeric(alpha_S*phi); # endogenous acquisition augmented by ecological release
alpha_R_phi = as.numeric(alpha_R*phi);
gamma_S = as.numeric(gamma);
gamma_R = as.numeric(gamma*(1+c)); # higher clearance rate in C_R due to cost of resistance
gamma_S_eta = as.numeric(gamma_S*(1-eta)); # clearance rate lowered during dysbiosis (less resource competition)
gamma_R_eta = as.numeric(gamma_R*(1-eta));
sigma_S = as.numeric(a*(1-r_S)*theta_C) # antibiotic pathogen clearance
sigma_R = as.numeric(a*(1-r_R)*theta_C);
sigma_m = as.numeric(a*theta_m) # antibiotic microbiome dysbiosis
delta = as.numeric(delta*(1-a)); # microbiome recovery
# (3/3): update parameter list
params <- params_pre
params['beta_epsilon'] <- beta_epsilon;
params['alpha_S'] <- alpha_S; params['alpha_R'] <- alpha_R;
params['alpha_S_phi'] <- alpha_S_phi; params['alpha_R_phi'] <- alpha_R_phi;
params['gamma_S'] <- gamma_S; params['gamma_R'] <- gamma_R;
params['gamma_S_eta'] <- gamma_S_eta; params['gamma_R_eta'] <- gamma_R_eta;
params['sigma_S'] <- sigma_S; params['sigma_R'] <- sigma_R; params['sigma_m'] <- sigma_m;
params['delta'] <- delta;
### calculate derivatives
with(as.list(c(states, params)),{
dS_e <- (1-(f_C))*(1-f_d)*mu - (S_e*mu) - S_e*(beta_epsilon*(C_S_e+C_S_d+C_R_e+C_R_d) + alpha_S + alpha_R + sigma_m) + S_d*delta + C_S_e*(gamma_S + sigma_S) + C_R_e*(gamma_R + sigma_R)
dS_d <- (1-(f_C))*f_d*mu - (S_d*mu) + S_e*sigma_m - S_d*(beta*(C_S_e+C_S_d+C_R_e+C_R_d) + alpha_S_phi + alpha_R_phi + delta) + C_S_d*(gamma_S_eta + sigma_S) + C_R_d*(gamma_R_eta + sigma_R)
dC_S_e <- f_C*(1-f_R)*(1-f_d)*mu - (C_S_e*mu) + S_e*(beta_epsilon*(C_S_e+C_S_d) + alpha_S) - C_S_e*(gamma_S + sigma_m + sigma_S) + (C_S_d*delta)
dC_S_d <- f_C*(1-f_R)*f_d*mu - (C_S_d*mu) + S_d*(beta*(C_S_e + C_S_d) + alpha_S_phi) + C_S_e*sigma_m - C_S_d*(gamma_S_eta + delta + sigma_S)
dC_R_e <- f_C*f_R*(1-f_d)*mu - (C_R_e*mu) + S_e*(beta_epsilon*(C_R_e+C_R_d) + alpha_R) - C_R_e*(gamma_R + sigma_m + sigma_R) + (C_R_d*delta)
dC_R_d <- f_C*f_R*f_d*mu - (C_R_d*mu) + S_d*(beta*(C_R_e + C_R_d) + alpha_R_phi) + C_R_e*sigma_m - C_R_d*(gamma_R_eta + delta + sigma_R)
# incidence
dC_S_trans <-
beta_epsilon*(C_S_e + C_S_d)*S_e +
beta*(C_S_e + C_S_d)*S_d
dC_S_acq <-
alpha_S*(S_e) +
alpha_S_phi*(S_d)
dC_R_trans <-
beta_epsilon*(C_R_e + C_R_d)*S_e +
beta*(C_R_e + C_R_d)*S_d
dC_R_acq <-
alpha_R*(S_e)+
alpha_R_phi*(S_d)
dC_R_hgt <- 0
# return derivatives
der <- c(dS_e, dS_d, dC_S_e, dC_S_d, dC_R_e, dC_R_d,
dC_S_trans, dC_S_acq, dC_R_trans, dC_R_acq, dC_R_hgt)
list(der)
})
}
### Model 5: two-strain microbiome competition model with HGT (MS equation XXXXXX)
ODEs_model5 <- function(t, states, params_pre){
## update parameter values:
# (1/3): extract parameter values needed for compound parameters
beta = params_pre['beta']; epsilon = params_pre['epsilon']
alpha = params_pre['alpha']; phi = params_pre['phi'];
gamma = params_pre['gamma']; c = params_pre['c']; eta = params_pre['eta'];
a = params_pre['a']; r_S = params_pre['r_S']; r_R = params_pre['r_R'];
theta_C = params_pre['theta_C']; theta_m = params_pre['theta_m']; delta = params_pre['delta']
# (2/3): calculate compound parameter values
beta_epsilon = as.numeric(beta*(1-epsilon)) # transmission rate reduced by colonization resistance
alpha_S = as.numeric(alpha*(1-a*(1-r_S))); # endogenous acquisition only when not exposed to effective antibiotic therapy
alpha_R = as.numeric(alpha*(1-a*(1-r_R)));
alpha_S_phi = as.numeric(alpha_S*phi); # endogenous acquisition augmented by ecological release
alpha_R_phi = as.numeric(alpha_R*phi);
gamma_S = as.numeric(gamma);
gamma_R = as.numeric(gamma*(1+c)); # higher clearance rate in C_R due to cost of resistance
gamma_S_eta = as.numeric(gamma_S*(1-eta)); # clearance rate lowered during dysbiosis (less resource competition)
gamma_R_eta = as.numeric(gamma_R*(1-eta));
sigma_S = as.numeric(a*(1-r_S)*theta_C) # antibiotic pathogen clearance
sigma_R = as.numeric(a*(1-r_R)*theta_C);
sigma_m = as.numeric(a*theta_m) # antibiotic microbiome dysbiosis
delta = as.numeric(delta*(1-a)); # microbiome recovery
# (3/3): update parameter list
params <- params_pre
params['beta_epsilon'] <- beta_epsilon;
params['alpha_S'] <- alpha_S; params['alpha_R'] <- alpha_R;
params['alpha_S_phi'] <- alpha_S_phi; params['alpha_R_phi'] <- alpha_R_phi;
params['gamma_S'] <- gamma_S; params['gamma_R'] <- gamma_R;
params['gamma_S_eta'] <- gamma_S_eta; params['gamma_R_eta'] <- gamma_R_eta;
params['sigma_S'] <- sigma_S; params['sigma_R'] <- sigma_R; params['sigma_m'] <- sigma_m;
params['delta'] <- delta;
### derivatives
with(as.list(c(states, params)),{
dS_e_s <- (1-(f_C))*(1-f_d)*(1-f_w)*mu - (S_e_s*mu) - S_e_s*(beta_epsilon*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r+C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_S + alpha_R + sigma_m) + S_d_s*delta + C_S_e_s*(gamma_S + sigma_S) + C_R_e_s*(gamma_R + sigma_R)
dS_e_r <- (1-(f_C))*(1-f_d)*f_w*mu - (S_e_r*mu) - S_e_r*(beta_epsilon*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r+C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_S + alpha_R + sigma_m) + S_d_r*delta + C_S_e_r*(gamma_S + sigma_S) + C_R_e_r*(gamma_R + sigma_R)
dS_d_s <- (1-(f_C))*f_d*(1-f_w)*mu - (S_d_s*mu) + S_e_s*((1-omega)*sigma_m) - S_d_s*(beta*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r+C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_S_phi + alpha_R_phi + delta) + C_S_d_s*(gamma_S_eta + sigma_S) + C_R_d_s*(gamma_R_eta + sigma_R)
dS_d_r <- (1-(f_C))*f_d*f_w*mu - (S_d_r*mu) + S_e_s*(omega*sigma_m) + S_e_r*sigma_m - S_d_r*(beta*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r+C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_S_phi + alpha_R_phi + delta) + C_S_d_r*(gamma_S_eta + sigma_S) + C_R_d_r*(gamma_R_eta + sigma_R)
dC_S_e_s <- f_C*(1-f_R)*(1-f_d)*(1-f_w)*mu - (C_S_e_s*mu) + S_e_s*(beta_epsilon*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r) + alpha_S) - C_S_e_s*(gamma_S + sigma_m + sigma_S) + C_S_d_s*delta
dC_S_e_r <- f_C*(1-f_R)*(1-f_d)*f_w*mu - (C_S_e_r*mu) + S_e_r*(beta_epsilon*(C_S_e_s+C_S_e_r+C_S_d_s+C_S_d_r) + alpha_S) - C_S_e_r*(gamma_S + sigma_m + sigma_S + chi_e) + C_S_d_r*delta
dC_S_d_s <- f_C*(1-f_R)*f_d*(1-f_w)*mu - (C_S_d_s*mu) + S_d_s*(beta*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r) + alpha_S_phi) + C_S_e_s*((1-omega)*sigma_m) - C_S_d_s*(gamma_S_eta + delta + sigma_S)
dC_S_d_r <- f_C*(1-f_R)*f_d*f_w*mu - (C_S_d_r*mu) + S_d_r*(beta*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r) + alpha_S_phi) + C_S_e_s*(omega*sigma_m) + C_S_e_r*sigma_m - C_S_d_r*(gamma_S_eta + delta + sigma_S + chi_d)
dC_R_e_s <- f_C*f_R*(1-f_d)*(1-f_w)*mu - (C_R_e_s*mu) + S_e_s*(beta_epsilon*(C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_R) - C_R_e_s*(gamma_R + sigma_m + sigma_R + chi_e) + (C_R_d_s*delta)
dC_R_e_r <- f_C*f_R*(1-f_d)*f_w*mu - (C_R_e_r*mu) + S_e_r*(beta_epsilon*(C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_R) + C_S_e_r*chi_e + C_R_e_s*chi_e - C_R_e_r*(gamma_R + sigma_m + sigma_R) + C_R_d_r*delta
dC_R_d_s <- f_C*f_R*f_d*(1-f_w)*mu - (C_R_d_s*mu) + S_d_s*(beta*(C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_R_phi) + C_R_e_s*((1-omega)*sigma_m) - C_R_d_s*(gamma_R_eta + delta + sigma_R + chi_d)
dC_R_d_r <- f_C*f_R*f_d*f_w*mu - (C_R_d_r*mu) + S_d_r*(beta*(C_R_e_s+C_R_e_r+C_R_d_s+C_R_d_r) + alpha_R_phi) + C_S_d_r*chi_d + C_R_e_s*(omega*sigma_m) + C_R_e_r*sigma_m + C_R_d_s*chi_d - C_R_d_r*(gamma_R_eta + delta + sigma_R)
# incidence
dC_S_trans <-
beta_epsilon*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r)*S_e_s +
beta_epsilon*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r)*S_e_r +
beta*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r)*S_d_s +
beta*(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r)*S_d_r
dC_S_acq <-
alpha_S*(S_e_s + S_e_r) +
alpha_S_phi*(S_d_s + S_d_r)
dC_R_trans <-
beta_epsilon*(C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r)*S_e_s +
beta_epsilon*(C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r)*S_e_r +
beta*(C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r)*S_d_s +
beta*(C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r)*S_d_r
dC_R_acq <-
alpha_R*(S_e_s + S_e_r)+
alpha_R_phi*(S_d_s + S_d_r)
dC_R_hgt <-
(chi_e)*(C_S_e_r) +
(chi_d)*(C_S_d_r)
# return derivatives
der <- c(dS_e_s, dS_e_r, dS_d_s, dS_d_r, dC_S_e_s, dC_S_e_r, dC_S_d_s, dC_S_d_r, dC_R_e_s, dC_R_e_r, dC_R_d_s, dC_R_d_r,
dC_S_trans, dC_S_acq, dC_R_trans, dC_R_acq, dC_R_hgt)
list(der)
})
}
Computing file changes ...