https://github.com/drmsmith/microbiomeR
Revision 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC, committed by GitHub on 02 July 2021, 10:56:52 UTC
1 parent a649afc
Tip revision: 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC
update readme
update readme
Tip revision: 9741c7a
functions.R
### over single set of ODE output:
f_test_dynamics = function(out){
out_df = data.frame(out)%>%dplyr::select(-time, -dC_S_trans, -dC_S_acq, -dC_R_trans, -dC_R_acq, -dC_R_hgt)
# test constant N
ones = out_df%>%(rowSums)
if(all.equal(length(ones),sum(ones))){}else{stop("Non-constant N")}
# test equilibrated by final t
for(i in 1:ncol(out_df)){
if(nth(out_df[,i],-1)-nth(out_df[,i],-3)<0.0001){
if(nth(out_df[,i],-1)-nth(out_df[,i],-2)<0.0001){}else{stop("Periodicity?")}}
else{stop("Not at equilibrium")}
}
}
### f_eqbm_univar
# Function to produce equilibrium values while varying one parameter over a range
f_eqbm_univar = function(model, ODEs, states_input, par_input,var, range){
if(!model %in% c('model1', 'model2', 'model3', 'model4', 'model5')){warning('select a model'); stop()}
max_time = 10000
time_step = 1000
output = data.frame()
for(i in range){
par_input[var] = i
out <- ode(y = states_input, times = seq(0, max_time, by = time_step), func = ODEs, parms = par_input, method = 'lsoda')
### determine system has found equilibrium (error function; will stop if not)
f_test_dynamics(out)
### model 1
if(model == 'model1'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par = var)%>%
cbind(par_val = i)%>%
mutate(prevalence_C_S = 0,
prevalence_C_R = C_R,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 2
if(model == 'model2'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par = var)%>%
cbind(par_val = i)%>%
mutate(prevalence_C_S = C_S,
prevalence_C_R = C_R,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 3
if(model == 'model3'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par = var)%>%
cbind(par_val = i)%>%
mutate(prevalence_C_S = 0,
prevalence_C_R = C_R_e + C_R_d,
R_rate = 1,
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 4
if(model == 'model4'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par = var)%>%
cbind(par_val = i)%>%
mutate(prevalence_C_S = C_S_e + C_S_d,
prevalence_C_R = C_R_e + C_R_d,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 5
if(model == 'model5'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par = var)%>%
cbind(par_val = i)%>%
mutate(prevalence_C_S = C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r,
prevalence_C_R = C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
# update data: calculate daily incidence from cumulative incidence
out_df_dailyIncidence = out_df%>%
dplyr::select(time, incidence_C_S, incidence_C_R)%>%
summarise(time = diff(time), incidence_C_S = diff(incidence_C_S), incidence_C_R = diff(incidence_C_R))%>%
mutate(incidence_C_S_daily = incidence_C_S/time,
incidence_C_R_daily = incidence_C_R/time)%>%
dplyr::select(incidence_C_S_daily, incidence_C_R_daily)%>%
cbind(out_df%>%filter(time == max_time),.)
# ones = out_df%>%dplyr::select(-time, -par, -par_val,
# -dC_S_trans, -dC_S_acq, -dC_R_trans, -dC_R_acq, -dC_R_hgt,
# -incidence_C_S, -incidence_C_R)%>%(rowSums)
# if(ones<0.999 | ones > 1.001){warning('N != 1'); stop("N != 1")}
output = rbind(output,out_df_dailyIncidence)
}
return(output)
}
### f_eqbm_bivar
# Function to produce equilibrium values while varying two parameters, each over a range
f_eqbm_bivar = function(model, ODEs, states_input, par_input,var1, range1, var2, range2){
if(!model %in% c('model1', 'model2', 'model3', 'model4', 'model5')){warning('select a model'); stop()}
max_time = 10000
time_step = 1000
output = data.frame()
for(i in range1){
par_input[var1] = i
for(j in range2){
par_input[var2] = j
out <- ode(y = states_input, times = seq(0, max_time, by = time_step), func = ODEs, parms = par_input, method = 'lsoda')
### determine system has found equilibrium (error function; will stop if not)
f_test_dynamics(out)
### model 1
if(model == 'model1'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par1 = var1)%>%
cbind(par1_val = i)%>%
cbind(par2 = var2)%>%
cbind(par2_val = j)%>%
mutate(prevalence_C_S = 0,
prevalence_C_R = C_R,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 2
if(model == 'model2'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par1 = var1)%>%
cbind(par1_val = i)%>%
cbind(par2 = var2)%>%
cbind(par2_val = j)%>%
mutate(prevalence_C_S = C_S,
prevalence_C_R = C_R,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 3
if(model == 'model3'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par1 = var1)%>%
cbind(par1_val = i)%>%
cbind(par2 = var2)%>%
cbind(par2_val = j)%>%
mutate(prevalence_C_S = 0,
prevalence_C_R = C_R_e + C_R_d,
R_rate = 1,
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 4
if(model == 'model4'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par1 = var1)%>%
cbind(par1_val = i)%>%
cbind(par2 = var2)%>%
cbind(par2_val = j)%>%
mutate(prevalence_C_S = C_S_e + C_S_d,
prevalence_C_R = C_R_e + C_R_d,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
### model 5
if(model == 'model5'){
out_df = data.frame(out)%>%
filter(time %in% c(max_time, max_time - time_step))%>%
cbind(par1 = var1)%>%
cbind(par1_val = i)%>%
cbind(par2 = var2)%>%
cbind(par2_val = j)%>%
mutate(prevalence_C_S = C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r,
prevalence_C_R = C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r,
R_rate = prevalence_C_R/(prevalence_C_S+prevalence_C_R),
incidence_C_S = dC_S_trans + dC_S_acq,
incidence_C_R = dC_R_trans + dC_R_acq + dC_R_hgt)
}
# update data: calculate daily incidence from cumulative incidence
out_df_dailyIncidence = out_df%>%
dplyr::select(time, incidence_C_S, incidence_C_R)%>%
summarise(time = diff(time), incidence_C_S = diff(incidence_C_S), incidence_C_R = diff(incidence_C_R))%>%
mutate(incidence_C_S_daily = incidence_C_S/time,
incidence_C_R_daily = incidence_C_R/time)%>%
dplyr::select(incidence_C_S_daily, incidence_C_R_daily)%>%
cbind(out_df%>%filter(time == max_time),.)
output = rbind(output,out_df_dailyIncidence)
}
}
return(output)
}
Computing file changes ...