https://github.com/drmsmith/microbiomeR
Revision 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC, committed by GitHub on 02 July 2021, 10:56:52 UTC
1 parent a649afc
Tip revision: 9741c7a63b6e4e83197081ca35c9732ac8f883ea authored by drmsmith on 02 July 2021, 10:56:52 UTC
update readme
update readme
Tip revision: 9741c7a
solve.R
library(tidyr)
library(dplyr)
library(magrittr)
library(deSolve)
source('ODEs.R')
source('functions.R')
source('parameters.R')
############
### PLAY ###
############
# examples of outputs from model and functions
# adjust parameters in param_play to evaluate impact on model behaviour
### DYNAMICS
# vary any of these parameters to evaluate impacts on model outputs:
params_play = params_default
params_play['r_R'] = 0.8
params_play['beta'] = 0.2
params_play['alpha'] = 0.01
params_play['gamma'] = 0.03
# run dynamics until when?
time_out = 1000
# MODEL 1
# integrate ODEs
output_model1 = ode(y = states_model1, times = c(0:time_out), func = ODEs_model1, parms = params_play);
# print initial outputs and final outputs
head(output_model1); tail(output_model1)
# model compartments should sum to 1
sum(output_model1[time_out,2:3])
# MODEL 2
output_model2 = ode(y = states_model2, times = c(0:time_out), func = ODEs_model2, parms = params_play)
head(output_model2); tail(output_model2)
sum(output_model2[time_out,2:4])
# MODEL 3
output_model3 = ode(y = states_model3, times = c(0:time_out), func = ODEs_model3, parms = params_play)
head(output_model3); tail(output_model3)
sum(output_model3[time_out,2:5])
# MODEL 4
output_model4 = ode(y = states_model4, times = c(0:time_out), func = ODEs_model4, parms = params_play)
head(output_model4); tail(output_model4)
sum(output_model4[time_out,2:7])
# MODEL 5
output_model5 = ode(y = states_model5, times = c(0:time_out), func = ODEs_model5, parms = params_play)
head(output_model5); tail(output_model5)
sum(output_model5[time_out,2:13])
### EQUILIBRIA: univar for each model
univar_par = 'a'
univar_par_range = seq(0,1,0.1)
out_model1 = f_eqbm_univar("model1", ODEs_model1, states_model1, params_play, univar_par, univar_par_range)
out_model2 = f_eqbm_univar("model2", ODEs_model2, states_model2, params_play, univar_par, univar_par_range)
out_model3 = f_eqbm_univar("model3", ODEs_model3, states_model3, params_play, univar_par, univar_par_range)
out_model4 = f_eqbm_univar("model4", ODEs_model4, states_model4, params_play, univar_par, univar_par_range)
out_model5 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_play, univar_par, univar_par_range)
### EQUILIBRIA: bivar for each model
bivar_par1 = 'theta_C'
bivar_par1_range = seq(0,1,0.2)
bivar_par2 = 'theta_m'
bivar_par2_range = seq(0,1,0.2)
out_model1_thetas = f_eqbm_bivar("model1", ODEs_model1, states_model1, params_play, bivar_par1, bivar_par1_range, bivar_par2, bivar_par2_range)
out_model2_thetas = f_eqbm_bivar("model2", ODEs_model2, states_model2, params_play, bivar_par1, bivar_par1_range, bivar_par2, bivar_par2_range)
out_model3_thetas = f_eqbm_bivar("model3", ODEs_model3, states_model3, params_play, bivar_par1, bivar_par1_range, bivar_par2, bivar_par2_range)
out_model4_thetas = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_play, bivar_par1, bivar_par1_range, bivar_par2, bivar_par2_range)
out_model5_thetas = f_eqbm_bivar("model5", ODEs_model5, states_model5, params_play, bivar_par1, bivar_par1_range, bivar_par2, bivar_par2_range)
################
### FIGURE 1 ###
################
range_univar = seq(0,1,0.02)
### find numerical equilibrium (solve ODEs) as a function of "a" (antibiotic exposure prevalence )
### model 1 :
# (a) r_R = 0.8
fig1_model1a = f_eqbm_univar("model1", ODEs_model1, states_model1, params_default, 'a', range_univar)%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R, R_rate, incidence_C_S_daily, incidence_C_R_daily)
# (b) r_R = 1
fig1_model1b = f_eqbm_univar("model1", ODEs_model1, states_model1, params_perfectR, 'a', range_univar)%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R, R_rate, incidence_C_S_daily, incidence_C_R_daily)
### model 2:
# (a) r_R = 0.8
fig1_model2a = f_eqbm_univar("model2", ODEs_model2, states_model2, params_default, 'a', range_univar)%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R, R_rate, incidence_C_S_daily, incidence_C_R_daily)
fig1_model2a_strains = fig1_model2a%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R)%>%
pivot_longer(-c(par, par_val))%>%
mutate(strain = ifelse(name == "prevalence_C_S", 'Sensitive', 'Resistant'))%>%
dplyr::select(-name)
# (b) r_R = 1
fig1_model2b = f_eqbm_univar("model2", ODEs_model2, states_model2, params_perfectR, 'a', range_univar)%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R, R_rate, incidence_C_S_daily, incidence_C_R_daily)
fig1_model2b_strains = fig1_model2b%>%
dplyr::select(par, par_val, prevalence_C_S, prevalence_C_R)%>%
pivot_longer(-c(par, par_val))%>%
mutate(strain = ifelse(name == "prevalence_C_S", 'Sensitive', 'Resistant'))%>%
dplyr::select(-name)
### model 3:
## (a) r_R = 0.8
# (i) epsilon
fig1_model3a_epsilon_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_epsilon_low, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'low')
fig1_model3a_epsilon_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_epsilon_med, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'medium')
fig1_model3a_epsilon_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_epsilon_high, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'high')
# (ii) eta
fig1_model3a_eta_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_eta_low, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'low')
fig1_model3a_eta_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_eta_med, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'medium')
fig1_model3a_eta_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_eta_high, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'high')
# (iii) phi
fig1_model3a_phi_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_phi_low, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'low')
fig1_model3a_phi_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_phi_med, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'medium')
fig1_model3a_phi_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_default_phi_high, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'high')
# (iv) combined
fig1_model3a_interactions = rbind(fig1_model3a_epsilon_low,
fig1_model3a_epsilon_med,
fig1_model3a_epsilon_high,
fig1_model3a_eta_low,
fig1_model3a_eta_med,
fig1_model3a_eta_high,
fig1_model3a_phi_low,
fig1_model3a_phi_med,
fig1_model3a_phi_high)%>%
dplyr::select(par, par_val, prevalence_C_R, interaction, value)%>%
pivot_wider(names_from = value, values_from = prevalence_C_R)
## (b) r_R = 1
# (i) epsilon
fig1_model3b_epsilon_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_epsilon_low, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'low')
fig1_model3b_epsilon_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_epsilon_med, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'medium')
fig1_model3b_epsilon_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_epsilon_high, 'a', range_univar)%>%
mutate(interaction = 'epsilon', value = 'high')
# (ii) eta
fig1_model3b_eta_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_eta_low, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'low')
fig1_model3b_eta_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_eta_med, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'medium')
fig1_model3b_eta_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_eta_high, 'a', range_univar)%>%
mutate(interaction = 'eta', value = 'high')
# (iii) phi
fig1_model3b_phi_low = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_phi_low, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'low')
fig1_model3b_phi_med = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_phi_med, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'medium')
fig1_model3b_phi_high = f_eqbm_univar("model3", ODEs_model3, states_model3, params_perfectR_phi_high, 'a', range_univar)%>%
mutate(interaction = 'phi', value = 'high')
# (iv) combined
fig1_model3b_interactions = rbind(fig1_model3b_epsilon_low,
fig1_model3b_epsilon_med,
fig1_model3b_epsilon_high,
fig1_model3b_eta_low,
fig1_model3b_eta_med,
fig1_model3b_eta_high,
fig1_model3b_phi_low,
fig1_model3b_phi_med,
fig1_model3b_phi_high)%>%
dplyr::select(par, par_val, prevalence_C_R, interaction, value)%>%
pivot_wider(names_from = value, values_from = prevalence_C_R)
################
### FIGURE 2 ###
################
range_bivar = seq(0,0.5,0.025)
fig2_default = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_default, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_lowInt_lowR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_lowInt_lowR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_lowInt_medR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_lowInt_medR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_lowInt_highR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_lowInt_highR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_medInt_lowR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_medInt_lowR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_medInt_medR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_medInt_medR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_medInt_highR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_medInt_highR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_highInt_lowR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_highInt_lowR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_highInt_medR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_highInt_medR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_highInt_highR = f_eqbm_bivar("model4", ODEs_model4, states_model4, params_highInt_highR, 'theta_C', range_bivar, 'theta_m', range_bivar)
fig2_mixed = rbind(fig2_lowInt_lowR%>%mutate(label = 1),
fig2_lowInt_medR%>%mutate(label = 2),
fig2_lowInt_highR%>%mutate(label = 3),
fig2_medInt_lowR%>%mutate(label = 4),
fig2_medInt_medR%>%mutate(label = 5),
fig2_medInt_highR%>%mutate(label = 6),
fig2_highInt_lowR%>%mutate(label = 7),
fig2_highInt_medR%>%mutate(label = 8),
fig2_highInt_highR%>%mutate(label = 9))
fig2_mixed_labels = c("Low interaction strengths\nLow resistance level (r = 0.2)",
"Low interaction strengths\nMedium resistance level (r = 0.5)",
"Low interaction strengths\nHigh resistance level (r = 0.8)",
"Medium interaction strengths\nLow resistance level (r = 0.2)",
"Medium interaction strengths\nMedium resistance level (r = 0.5)",
"Medium interaction strengths\nHigh resistance level (r = 0.8)",
"High interaction strengths\nLow resistance level (r = 0.2)",
"High interaction strengths\nMedium resistance level (r = 0.5)",
"High interaction strengths\nHigh resistance level (r = 0.8)")
fig2_mixed$label = factor(fig2_mixed$label, levels = 1:9, labels = fig2_mixed_labels)
################
### FIGURE 3 ###
################
# Default parameters
fig3_noInt_noHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_noHGT, 'a', range_univar)
fig3_noInt_lowHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_lowHGT, 'a', range_univar)
fig3_noInt_highHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_highHGT, 'a', range_univar)
fig3_withInt_noHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_noHGT, 'a', range_univar)
fig3_withInt_lowHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_lowHGT, 'a', range_univar)
fig3_withInt_highHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_highHGT, 'a', range_univar)
fig3 = rbind(fig3_noInt_noHGT%>%mutate(HGT = 'null', Interactions = 'none'),
fig3_noInt_lowHGT%>%mutate(HGT = 'low', Interactions = 'none'),
fig3_noInt_highHGT%>%mutate(HGT = 'high', Interactions = 'none'),
fig3_withInt_noHGT%>%mutate(HGT = 'null', Interactions = 'yes'),
fig3_withInt_lowHGT%>%mutate(HGT = 'low', Interactions = 'yes'),
fig3_withInt_highHGT%>%mutate(HGT = 'high', Interactions = 'yes'))
# Medium resistance level (r_R = 0.5)
fig3_noInt_noHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_noHGT_medR, 'a', range_univar)
fig3_noInt_lowHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_lowHGT_medR, 'a', range_univar)
fig3_noInt_highHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_highHGT_medR, 'a', range_univar)
fig3_withInt_noHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_noHGT_medR, 'a', range_univar)
fig3_withInt_lowHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_lowHGT_medR, 'a', range_univar)
fig3_withInt_highHGT_medR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_highHGT_medR, 'a', range_univar)
fig3_medR = rbind(fig3_noInt_noHGT_medR%>%mutate(HGT = 'null', Interactions = 'none'),
fig3_noInt_lowHGT_medR%>%mutate(HGT = 'low', Interactions = 'none'),
fig3_noInt_highHGT_medR%>%mutate(HGT = 'high', Interactions = 'none'),
fig3_withInt_noHGT_medR%>%mutate(HGT = 'null', Interactions = 'yes'),
fig3_withInt_lowHGT_medR%>%mutate(HGT = 'low', Interactions = 'yes'),
fig3_withInt_highHGT_medR%>%mutate(HGT = 'high', Interactions = 'yes'))
# Low resistance level (r_R = 0.2)
fig3_noInt_noHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_noHGT_lowR, 'a', range_univar)
fig3_noInt_lowHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_lowHGT_lowR, 'a', range_univar)
fig3_noInt_highHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_noInt_highHGT_lowR, 'a', range_univar)
fig3_withInt_noHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_noHGT_lowR, 'a', range_univar)
fig3_withInt_lowHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_lowHGT_lowR, 'a', range_univar)
fig3_withInt_highHGT_lowR = f_eqbm_univar("model5", ODEs_model5, states_model5, params_withInt_highHGT_lowR, 'a', range_univar)
fig3_lowR = rbind(fig3_noInt_noHGT_lowR%>%mutate(HGT = 'null', Interactions = 'none'),
fig3_noInt_lowHGT_lowR%>%mutate(HGT = 'low', Interactions = 'none'),
fig3_noInt_highHGT_lowR%>%mutate(HGT = 'high', Interactions = 'none'),
fig3_withInt_noHGT_lowR%>%mutate(HGT = 'null', Interactions = 'yes'),
fig3_withInt_lowHGT_lowR%>%mutate(HGT = 'low', Interactions = 'yes'),
fig3_withInt_highHGT_lowR%>%mutate(HGT = 'high', Interactions = 'yes'))
#################
### Figure S5 ###
#################
### dynamics
### no interactions
# initial conditions
params_invasion_none = params_invasion; params_invasion_none['epsilon'] = 0; params_invasion_none['eta'] = 0; params_invasion_none['phi'] = 1; params_invasion_none['chi_e'] = 0; params_invasion_none['chi_d'] = 0; params_invasion_none['omega'] = 0;
dynamics_none = ode(y = states_invasion, times = c(0:1000), func = ODEs_model5, parms = params_invasion_none, method = 'lsoda')
states_none_preintervention = dynamics_none[nrow(dynamics_none),2:ncol(dynamics_none)]
# from beginning
dynamics_none = ode(y = states_none_preintervention, times = c(0:90), func = ODEs_model5, parms = params_invasion_none, method = 'lsoda')
# introduce intervention
params_invasion_none_intervention = params_invasion_none; params_invasion_none_intervention[par_intervention1] = val_intervention1;
states_none_intervention = dynamics_none[nrow(dynamics_none),2:ncol(dynamics_none)]
dynamics_none_2 = ode(y = states_none_intervention, times = c(91:180), func = ODEs_model5, parms = params_invasion_none_intervention, method = 'lsoda')
# introduce intervention 2
params_invasion_none_intervention2 = params_invasion_none_intervention; params_invasion_none_intervention2[par_intervention2] = val_intervention2;
states_none_intervention2 = dynamics_none_2[nrow(dynamics_none_2),2:ncol(dynamics_none_2)]
dynamics_none_3 = ode(y = states_none_intervention2, times = c(181:270), func = ODEs_model5, parms = params_invasion_none_intervention2, method = 'lsoda')
# introduce intervention 3
params_invasion_none_intervention3 = params_invasion_none_intervention2; params_invasion_none_intervention3[par_intervention3] = val_intervention3;
states_none_intervention3 = dynamics_none_3[nrow(dynamics_none_3),2:ncol(dynamics_none_3)]
dynamics_none_4 = ode(y = states_none_intervention3, times = c(271:364), func = ODEs_model5, parms = params_invasion_none_intervention3, method = 'lsoda')
# combine
dynamics_none_intervention = rbind(dynamics_none, dynamics_none_2, dynamics_none_3, dynamics_none_4)%>%as.data.frame()
### colonization resistance
# initial conditions
params_invasion_epsilon = params_invasion_none; params_invasion_epsilon['epsilon'] = 0.5;
dynamics_epsilon = ode(y = states_invasion, times = c(0:1000), func = ODEs_model5, parms = params_invasion_epsilon, method = 'lsoda')
states_epsilon_preintervention = dynamics_epsilon[nrow(dynamics_epsilon),2:ncol(dynamics_epsilon)]
# from beginning
dynamics_epsilon = ode(y = states_epsilon_preintervention, times = c(0:90), func = ODEs_model5, parms = params_invasion_epsilon, method = 'lsoda')
# introduce intervention
params_invasion_epsilon_intervention = params_invasion_epsilon; params_invasion_epsilon_intervention[par_intervention1] = val_intervention1
states_epsilon_intervention = dynamics_epsilon[nrow(dynamics_epsilon),2:ncol(dynamics_epsilon)]
dynamics_epsilon_2 = ode(y = states_epsilon_intervention, times = c(91:180), func = ODEs_model5, parms = params_invasion_epsilon_intervention, method = 'lsoda')
# introduce intervention 2
params_invasion_epsilon_intervention2 = params_invasion_epsilon_intervention; params_invasion_epsilon_intervention2[par_intervention2] = val_intervention2;
states_epsilon_intervention2 = dynamics_epsilon_2[nrow(dynamics_epsilon_2),2:ncol(dynamics_epsilon_2)]
dynamics_epsilon_3 = ode(y = states_epsilon_intervention2, times = c(181:270), func = ODEs_model5, parms = params_invasion_epsilon_intervention2, method = 'lsoda')
# introduce intervention 3
params_invasion_epsilon_intervention3 = params_invasion_epsilon_intervention2; params_invasion_epsilon_intervention3[par_intervention3] = val_intervention3;
states_epsilon_intervention3 = dynamics_epsilon_3[nrow(dynamics_epsilon_3),2:ncol(dynamics_epsilon_3)]
dynamics_epsilon_4 = ode(y = states_epsilon_intervention3, times = c(271:364), func = ODEs_model5, parms = params_invasion_epsilon_intervention3, method = 'lsoda')
# combine
dynamics_epsilon_intervention = rbind(dynamics_epsilon, dynamics_epsilon_2, dynamics_epsilon_3, dynamics_epsilon_4)%>%as.data.frame()
### resource competition
# initial conditions
params_invasion_eta = params_invasion_none; params_invasion_eta['eta'] = 0.5;
dynamics_eta = ode(y = states_invasion, times = c(0:1000), func = ODEs_model5, parms = params_invasion_eta, method = 'lsoda')
states_eta_preintervention = dynamics_eta[nrow(dynamics_eta),2:ncol(dynamics_eta)]
# from beginning
dynamics_eta = ode(y = states_eta_preintervention, times = c(0:90), func = ODEs_model5, parms = params_invasion_eta, method = 'lsoda')
# introduce intervention
params_invasion_eta_intervention = params_invasion_eta; params_invasion_eta_intervention[par_intervention1] = val_intervention1
states_eta_intervention = dynamics_eta[nrow(dynamics_eta),2:ncol(dynamics_eta)]
dynamics_eta_2 = ode(y = states_eta_intervention, times = c(91:180), func = ODEs_model5, parms = params_invasion_eta_intervention, method = 'lsoda')
# introduce intervention 2
params_invasion_eta_intervention2 = params_invasion_eta_intervention; params_invasion_eta_intervention2[par_intervention2] = val_intervention2;
states_eta_intervention2 = dynamics_eta_2[nrow(dynamics_eta_2),2:ncol(dynamics_eta_2)]
dynamics_eta_3 = ode(y = states_eta_intervention2, times = c(181:270), func = ODEs_model5, parms = params_invasion_eta_intervention2, method = 'lsoda')
# introduce intervention 3
params_invasion_eta_intervention3 = params_invasion_eta_intervention2; params_invasion_eta_intervention3[par_intervention3] = val_intervention3;
states_eta_intervention3 = dynamics_eta_3[nrow(dynamics_eta_3),2:ncol(dynamics_eta_3)]
dynamics_eta_4 = ode(y = states_eta_intervention3, times = c(271:364), func = ODEs_model5, parms = params_invasion_eta_intervention3, method = 'lsoda')
# combine
dynamics_eta_intervention = rbind(dynamics_eta, dynamics_eta_2, dynamics_eta_3, dynamics_eta_4)%>%as.data.frame()
### ecological release
# initial conditions
params_invasion_phi = params_invasion_none; params_invasion_phi['phi'] = 5;
dynamics_phi = ode(y = states_invasion, times = c(0:1000), func = ODEs_model5, parms = params_invasion_phi, method = 'lsoda')
states_phi_preintervention = dynamics_phi[nrow(dynamics_phi),2:ncol(dynamics_phi)]
# from beginning
dynamics_phi = ode(y = states_phi_preintervention, times = c(0:90), func = ODEs_model5, parms = params_invasion_phi, method = 'lsoda')
# introduce intervention
params_invasion_phi_intervention = params_invasion_phi; params_invasion_phi_intervention[par_intervention1] = val_intervention1
states_phi_intervention = dynamics_phi[nrow(dynamics_phi),2:ncol(dynamics_phi)]
dynamics_phi_2 = ode(y = states_phi_intervention, times = c(91:180), func = ODEs_model5, parms = params_invasion_phi_intervention, method = 'lsoda')
# introduce intervention 2
params_invasion_phi_intervention2 = params_invasion_phi_intervention; params_invasion_phi_intervention2[par_intervention2] = val_intervention2;
states_phi_intervention2 = dynamics_phi_2[nrow(dynamics_phi_2),2:ncol(dynamics_phi_2)]
dynamics_phi_3 = ode(y = states_phi_intervention2, times = c(181:270), func = ODEs_model5, parms = params_invasion_phi_intervention2, method = 'lsoda')
# introduce intervention 3
params_invasion_phi_intervention3 = params_invasion_phi_intervention2; params_invasion_phi_intervention3[par_intervention3] = val_intervention3;
states_phi_intervention3 = dynamics_phi_3[nrow(dynamics_phi_3),2:ncol(dynamics_phi_3)]
dynamics_phi_4 = ode(y = states_phi_intervention3, times = c(271:364), func = ODEs_model5, parms = params_invasion_phi_intervention3, method = 'lsoda')
# combine
dynamics_phi_intervention = rbind(dynamics_phi, dynamics_phi_2, dynamics_phi_3, dynamics_phi_4)%>%as.data.frame()
### all
# initial conditions
params_invasion_all = params_invasion_none; params_invasion_all['epsilon'] = 0.5; params_invasion_all['eta'] = 0.5; params_invasion_all['phi'] = 5; #params_invasion_all['chi_e'] = 0.01; params_invasion_all['chi_d'] = 0.05;
dynamics_all = ode(y = states_invasion, times = c(0:1000), func = ODEs_model5, parms = params_invasion_all, method = 'lsoda')
states_all_preintervention = dynamics_all[nrow(dynamics_all),2:ncol(dynamics_all)]
# from beginning
dynamics_all = ode(y = states_all_preintervention, times = c(0:90), func = ODEs_model5, parms = params_invasion_all, method = 'lsoda')
# introduce intervention
params_invasion_all_intervention = params_invasion_all; params_invasion_all_intervention[par_intervention1] = val_intervention1
states_all_intervention = dynamics_all[nrow(dynamics_all),2:ncol(dynamics_all)]
dynamics_all_2 = ode(y = states_all_intervention, times = c(91:180), func = ODEs_model5, parms = params_invasion_all_intervention, method = 'lsoda')
# introduce intervention 2
params_invasion_all_intervention2 = params_invasion_all_intervention; params_invasion_all_intervention2[par_intervention2] = val_intervention2;
states_all_intervention2 = dynamics_all_2[nrow(dynamics_all_2),2:ncol(dynamics_all_2)]
dynamics_all_3 = ode(y = states_all_intervention2, times = c(181:270), func = ODEs_model5, parms = params_invasion_all_intervention2, method = 'lsoda')
# introduce intervention 3
params_invasion_all_intervention3 = params_invasion_all_intervention2; params_invasion_all_intervention3[par_intervention3] = val_intervention3;
states_all_intervention3 = dynamics_all_3[nrow(dynamics_all_3),2:ncol(dynamics_all_3)]
dynamics_all_4 = ode(y = states_all_intervention3, times = c(271:364), func = ODEs_model5, parms = params_invasion_all_intervention3, method = 'lsoda')
# combine
dynamics_all_intervention = rbind(dynamics_all, dynamics_all_2, dynamics_all_3, dynamics_all_4)%>%as.data.frame()
# combine all
dynamics_combined = rbind(dynamics_none_intervention%>%mutate(Interaction = 'none'),
dynamics_epsilon_intervention%>%mutate(Interaction = 'colonization resistance'),
dynamics_eta_intervention%>%mutate(Interaction = 'resource competition'),
dynamics_phi_intervention%>%mutate(Interaction = 'ecological release'),
#dynamics_chi_intervention%>%mutate(Interaction = 'HGT'),
dynamics_all_intervention%>%mutate(Interaction = 'all'))%>%
mutate(prevalence_C_R = C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r,
R_rate = (C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r)/(C_S_e_s + C_S_e_r + C_S_d_s + C_S_d_r + C_R_e_s + C_R_e_r + C_R_d_s + C_R_d_r))
dynamics_combined$Interaction = factor(dynamics_combined$Interaction,
levels = c('none', 'colonization resistance', 'resource competition', 'ecological release', 'all'))
#################
### Figure S7 ###
#################
# panel A: effect of HGT varying over parameter ranges
pars_varied = c('a', 'r_R', 'c', 'epsilon', 'eta', 'phi', 'beta', 'gamma', 'alpha', 'delta', 'omega', 'f_w')
pars_varied_labels = c('antibiotic exposure prevalence', 'resistance level', 'cost of resistance',
'colonization resistance', 'resource competition', 'ecological release',
'transmission rate', 'clearance rate', 'endogenous acquisition rate',
'dysbiosis recovery rate', 'plasmid acquisition rate', 'admission fraction (plasmid)')
figS7_a_final = data.frame()
for(par_i in pars_varied){
print(par_i)
if(par_i %in% c('a', 'r_R', 'epsilon', 'eta')){iter_min = 0; iter_max = 1; iter_interval = 0.02}
if(par_i %in% c('c')){iter_min = 0; iter_max = 10; iter_interval = 0.2}
if(par_i %in% c('phi')){iter_min = 1; iter_max = 10; iter_interval = 0.2}
if(par_i %in% c('delta')){iter_min = 0; iter_max = 0.5; iter_interval = 0.002*5}
if(par_i %in% c('beta')){iter_min = 0; iter_max = 0.2; iter_interval = 0.005}
if(par_i %in% c('alpha', 'gamma', 'f_w', 'omega')){iter_min = 0; iter_max = 0.1; iter_interval = 0.002}
range_univar_loop = seq(iter_min, iter_max, iter_interval)
figS7_a_noHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_noHGT, par_i, range_univar_loop)
figS7_a_lowHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_lowHGT, par_i, range_univar_loop)
figS7_a_highHGT = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_highHGT, par_i, range_univar_loop)
figS7_a = rbind(figS7_a_noHGT%>%mutate(rate = 'none')%>%
dplyr::select(par, par_val, prevalence_C_R, rate),
figS7_a_lowHGT%>%mutate(rate = 'low')%>%
dplyr::select(par, par_val, prevalence_C_R, rate),
figS7_a_highHGT%>%mutate(rate = 'high')%>%
dplyr::select(par, par_val, prevalence_C_R, rate))%>%
pivot_wider(values_from = prevalence_C_R, names_from = rate)%>%
mutate(diff_none = none - none,
diff_low = low - none,
diff_high = high - none)
figS7_a_final = rbind(figS7_a_final, figS7_a)
}
figS7_a_final$par = factor(figS7_a_final$par, levels = pars_varied, labels = pars_varied_labels)
# panel B: varying chi_d/chi_e
range_univar = seq(0,1,0.02)
figS7_b_varyHGT1 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_varyHGT1, 'a', range_univar)
figS7_b_varyHGT2 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_varyHGT2, 'a', range_univar)
figS7_b_varyHGT3 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_varyHGT3, 'a', range_univar)
figS7_b_varyHGT4 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_varyHGT4, 'a', range_univar)
figS7_b_varyHGT5 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_varyHGT5, 'a', range_univar)
figS7_varyHGT = rbind(figS7_b_varyHGT1%>%mutate(ratio = 1),
figS7_b_varyHGT2%>%mutate(ratio = 2),
figS7_b_varyHGT3%>%mutate(ratio = 4),
figS7_b_varyHGT4%>%mutate(ratio = 8),
figS7_b_varyHGT5%>%mutate(ratio = 16))
# panel C: varying c over a
# cost 1: c=-0.5 (actually a fitness benefit)
figS7_c_vary_c0_1 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c0_1, 'a', range_univar)%>%
mutate(prevalence0 = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence0)
figS7_c_vary_c1_1 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c1_1, 'a', range_univar)%>%
mutate(prevalence = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence)
figS7_c_vary_1 = left_join(figS7_c_vary_c0_1, figS7_c_vary_c1_1)%>%mutate(prev_difference = prevalence - prevalence0)%>%
mutate(cost = -0.5)
# cost 2: c=0 (no cost)
figS7_c_vary_c0_2 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c0_2, 'a', range_univar)%>%
mutate(prevalence0 = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence0)
figS7_c_vary_c1_2 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c1_2, 'a', range_univar)%>%
mutate(prevalence = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence)
figS7_c_vary_2 = left_join(figS7_c_vary_c0_2, figS7_c_vary_c1_2)%>%mutate(prev_difference = prevalence - prevalence0)%>%
mutate(cost = 0)
# cost 3: c=1 (baseline cost)
figS7_c_vary_c0_3 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c0_3, 'a', range_univar)%>%
mutate(prevalence0 = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence0)
figS7_c_vary_c1_3 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c1_3, 'a', range_univar)%>%
mutate(prevalence = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence)
figS7_c_vary_3 = left_join(figS7_c_vary_c0_3, figS7_c_vary_c1_3)%>%mutate(prev_difference = prevalence - prevalence0)%>%
mutate(cost = 1)
# cost 4: c=2 (higher cost)
figS7_c_vary_c0_4 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c0_4, 'a', range_univar)%>%
mutate(prevalence0 = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence0)
figS7_c_vary_c1_4 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c1_4, 'a', range_univar)%>%
mutate(prevalence = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence)
figS7_c_vary_4 = left_join(figS7_c_vary_c0_4, figS7_c_vary_c1_4)%>%mutate(prev_difference = prevalence - prevalence0)%>%
mutate(cost = 2)
# cost 5: c=4 (highest cost)
figS7_c_vary_c0_5 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c0_5, 'a', range_univar)%>%
mutate(prevalence0 = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence0)
figS7_c_vary_c1_5 = f_eqbm_univar("model5", ODEs_model5, states_model5, params_HGTsupp_vary_c1_5, 'a', range_univar)%>%
mutate(prevalence = prevalence_C_R + prevalence_C_S)%>%
dplyr::select(par, par_val, prevalence)
figS7_c_vary_5 = left_join(figS7_c_vary_c0_5, figS7_c_vary_c1_5)%>%mutate(prev_difference = prevalence - prevalence0)%>%
mutate(cost = 4)
# combine
figS7_c_vary = rbind(figS7_c_vary_1, figS7_c_vary_2, figS7_c_vary_3, figS7_c_vary_4, figS7_c_vary_5)
Computing file changes ...