Revision 994e42225542c81cc02708658f24865826071d4c authored by Lukasz Kidzinski on 03 September 2017, 04:17:18 UTC, committed by cran-robot on 03 September 2017, 04:17:18 UTC
1 parent ce9d67e
README.md
# pcdpca
Implementation of "Dynamic principal components of periodically correlated functional time series".
Two examples in `demo` directory:
- pm10 data from Graz (comparizon with DFPCA paper)
- simplation with parametrized periodicity
## Installation
library("devtools")
install_github("kidzik/pcdpca")
## Running a demo
library("pcdpca")
demo("simulation")
demo("pcdpca.pm10")
## Usage
Let `X` be a multivariate time series, a matrix with `n` observations and `d` covariates, periodic with `period = 2`. Then
FF = pcdpca(X, period=2) # finds the optimal filter
Yhat = pcdpca.scores(X, FF) # applies the filter
Yhat[,-1] = 0 # forces the use of only one component
Xhat = pcdpca.inverse(Yhat, FF) # deconvolution
cat(sum((X-Xhat)^2) / sum(X^2)) # variance explained
Computing file changes ...