Revision 9c29bcd189f4ab1644b7125713602532d0aefdb7 authored by Eric Dumazet on 21 September 2018, 22:27:48 UTC, committed by David S. Miller on 24 September 2018, 04:55:25 UTC
As diagnosed by Song Liu, ndo_poll_controller() can
be very dangerous on loaded hosts, since the cpu
calling ndo_poll_controller() might steal all NAPI
contexts (for all RX/TX queues of the NIC). This capture
can last for unlimited amount of time, since one
cpu is generally not able to drain all the queues under load.

mlx5 uses NAPI for TX completions, so we better let core
networking stack call the napi->poll() to avoid the capture.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1 parent a24b66c
Raw File
machine.c
// SPDX-License-Identifier: GPL-2.0
#include <dirent.h>
#include <errno.h>
#include <inttypes.h>
#include <regex.h>
#include "callchain.h"
#include "debug.h"
#include "event.h"
#include "evsel.h"
#include "hist.h"
#include "machine.h"
#include "map.h"
#include "sort.h"
#include "strlist.h"
#include "thread.h"
#include "vdso.h"
#include <stdbool.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "unwind.h"
#include "linux/hash.h"
#include "asm/bug.h"

#include "sane_ctype.h"
#include <symbol/kallsyms.h>
#include <linux/mman.h>

static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
	init_rwsem(&dsos->lock);
}

static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
		init_rwsem(&threads->lock);
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

static int machine__set_mmap_name(struct machine *machine)
{
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;

	return machine->mmap_name ? 0 : -ENOMEM;
}

int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
	int err = -ENOMEM;

	memset(machine, 0, sizeof(*machine));
	map_groups__init(&machine->kmaps, machine);
	RB_CLEAR_NODE(&machine->rb_node);
	dsos__init(&machine->dsos);

	machine__threads_init(machine);

	machine->vdso_info = NULL;
	machine->env = NULL;

	machine->pid = pid;

	machine->id_hdr_size = 0;
	machine->kptr_restrict_warned = false;
	machine->comm_exec = false;
	machine->kernel_start = 0;
	machine->vmlinux_map = NULL;

	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (machine__set_mmap_name(machine))
		goto out;

	if (pid != HOST_KERNEL_ID) {
		struct thread *thread = machine__findnew_thread(machine, -1,
								pid);
		char comm[64];

		if (thread == NULL)
			goto out;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
		thread__set_comm(thread, comm, 0);
		thread__put(thread);
	}

	machine->current_tid = NULL;
	err = 0;

out:
	if (err) {
		zfree(&machine->root_dir);
		zfree(&machine->mmap_name);
	}
	return 0;
}

struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

static void dsos__purge(struct dsos *dsos)
{
	struct dso *pos, *n;

	down_write(&dsos->lock);

	list_for_each_entry_safe(pos, n, &dsos->head, node) {
		RB_CLEAR_NODE(&pos->rb_node);
		pos->root = NULL;
		list_del_init(&pos->node);
		dso__put(pos);
	}

	up_write(&dsos->lock);
}

static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
	exit_rwsem(&dsos->lock);
}

void machine__delete_threads(struct machine *machine)
{
	struct rb_node *nd;
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		down_write(&threads->lock);
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);

			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
		up_write(&threads->lock);
	}
}

void machine__exit(struct machine *machine)
{
	int i;

	if (machine == NULL)
		return;

	machine__destroy_kernel_maps(machine);
	map_groups__exit(&machine->kmaps);
	dsos__exit(&machine->dsos);
	machine__exit_vdso(machine);
	zfree(&machine->root_dir);
	zfree(&machine->mmap_name);
	zfree(&machine->current_tid);

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		exit_rwsem(&threads->lock);
	}
}

void machine__delete(struct machine *machine)
{
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
}

void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
			      const char *root_dir)
{
	struct rb_node **p = &machines->guests.rb_node;
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
	rb_insert_color(&machine->rb_node, &machines->guests);

	return machine;
}

void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

struct machine *machines__find(struct machines *machines, pid_t pid)
{
	struct rb_node **p = &machines->guests.rb_node;
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

	if (pid == HOST_KERNEL_ID)
		return &machines->host;

	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

struct machine *machines__findnew(struct machines *machines, pid_t pid)
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
				seen = strlist__new(NULL, NULL);

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
{
	struct rb_node *nd;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
{
	struct rb_node *node;
	struct machine *machine;

	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
	if (!leader)
		goto out_err;

	if (!leader->mg)
		leader->mg = map_groups__new(machine);

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
		map_groups__put(th->mg);
	}

	th->mg = map_groups__get(leader->mg);
out_put:
	thread__put(leader);
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
	goto out_put;
}

/*
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
 */
static struct thread*
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
{
	struct thread *th;

	th = threads->last_match;
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return thread__get(th);
		}

		threads->last_match = NULL;
	}

	return NULL;
}

static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

static void
__threads__set_last_match(struct threads *threads, struct thread *th)
{
	threads->last_match = th;
}

static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
	struct rb_node **p = &threads->entries.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

		if (th->tid == tid) {
			threads__set_last_match(threads, th);
			machine__update_thread_pid(machine, th, pid);
			return thread__get(th);
		}

		if (tid < th->tid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

	th = thread__new(pid, tid);
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &threads->entries);

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
		if (thread__init_map_groups(th, machine)) {
			rb_erase_init(&th->rb_node, &threads->entries);
			RB_CLEAR_NODE(&th->rb_node);
			thread__put(th);
			return NULL;
		}
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
		threads__set_last_match(threads, th);
		++threads->nr;
	}

	return th;
}

struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
}

struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
{
	struct threads *threads = machine__threads(machine, tid);
	struct thread *th;

	down_write(&threads->lock);
	th = __machine__findnew_thread(machine, pid, tid);
	up_write(&threads->lock);
	return th;
}

struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
{
	struct threads *threads = machine__threads(machine, tid);
	struct thread *th;

	down_read(&threads->lock);
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
	up_read(&threads->lock);
	return th;
}

struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
	int err = 0;

	if (exec)
		machine->comm_exec = true;

	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
				union perf_event *event, struct perf_sample *sample __maybe_unused)
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
{
	struct dso *dso;

	down_write(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
	if (!dso) {
		dso = __dsos__addnew(&machine->dsos, m->name);
		if (dso == NULL)
			goto out_unlock;

		dso__set_module_info(dso, m, machine);
		dso__set_long_name(dso, strdup(filename), true);
	}

	dso__get(dso);
out_unlock:
	up_write(&machine->dsos.lock);
	return dso;
}

int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

	dso__set_long_name(dso, dup_filename, true);
}

struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
{
	struct map *map = NULL;
	struct dso *dso = NULL;
	struct kmod_path m;

	if (kmod_path__parse_name(&m, filename))
		return NULL;

	map = map_groups__find_by_name(&machine->kmaps, m.name);
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
		goto out;
	}

	dso = machine__findnew_module_dso(machine, &m, filename);
	if (dso == NULL)
		goto out;

	map = map__new2(start, dso);
	if (map == NULL)
		goto out;

	map_groups__insert(&machine->kmaps, map);

	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
out:
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
	free(m.name);
	return map;
}

size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
{
	struct rb_node *nd;
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += __dsos__fprintf(&pos->dsos.head, fp);
	}

	return ret;
}

size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
}

size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
	struct dso *kdso = machine__kernel_map(machine)->dso;

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
	size_t ret;
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];

		down_read(&threads->lock);

		ret = fprintf(fp, "Threads: %u\n", threads->nr);

		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);

			ret += thread__fprintf(pos, fp);
		}

		up_read(&threads->lock);
	}
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = machine->mmap_name;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
	} else {
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
{
	char filename[PATH_MAX];
	int i, err = -1;
	const char *name;
	u64 addr = 0;

	machine__get_kallsyms_filename(machine, filename, PATH_MAX);

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
			break;
	}

	if (err)
		return -1;

	if (symbol_name)
		*symbol_name = name;

	*start = addr;
	return 0;
}

int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);

	map_groups__insert(&machine->kmaps, map);

	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
	int nr_cpus_avail, cpu;
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;

	pgoff = find_entry_trampoline(kernel);
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
	return 0;
}

static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	struct kmap *kmap;
	struct map *map;

	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;

	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;

	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);

	if (map == NULL)
		return;

	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
	}

	map__zput(machine->vmlinux_map);
}

int machines__create_guest_kernel_maps(struct machines *machines)
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

void machines__destroy_kernel_maps(struct machines *machines)
{
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
		rb_erase(&pos->rb_node, &machines->guests);
		machine__delete(pos);
	}
}

int machines__create_kernel_maps(struct machines *machines, pid_t pid)
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename)
{
	struct map *map = machine__kernel_map(machine);
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);

	if (ret > 0) {
		dso__set_loaded(map->dso);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		map_groups__fixup_end(&machine->kmaps);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine)
{
	struct map *map = machine__kernel_map(machine);
	int ret = dso__load_vmlinux_path(map->dso, map);

	if (ret > 0)
		dso__set_loaded(map->dso);

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
	struct map *map = map_groups__find_by_name(mg, m->name);

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso)) {
		map->dso->symtab_type++;
		map->dso->comp = m->comp;
	}

	return 0;
}

static int map_groups__set_modules_path_dir(struct map_groups *mg,
				const char *dir_name, int depth)
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
			if (ret < 0)
				goto out;
		} else {
			struct kmod_path m;

			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;

			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);

			free(m.name);

			if (ret)
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
		 machine->root_dir, version);
	free(version);

	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
}
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}

static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
{
	struct machine *machine = arg;
	struct map *map;

	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

	map = machine__findnew_module_map(machine, start, name);
	if (map == NULL)
		return -1;
	map->end = start + size;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
	const char *modules;
	char path[PATH_MAX];

	if (machine__is_default_guest(machine)) {
		modules = symbol_conf.default_guest_modules;
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
		modules = path;
	}

	if (symbol__restricted_filename(modules, "/proc/modules"))
		return -1;

	if (modules__parse(modules, machine, machine__create_module))
		return -1;

	if (!machine__set_modules_path(machine))
		return 0;

	pr_debug("Problems setting modules path maps, continuing anyway...\n");

	return 0;
}

static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
	const char *name = NULL;
	struct map *map;
	u64 addr = 0;
	int ret;

	if (kernel == NULL)
		return -1;

	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
		goto out_put;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
			machine__destroy_kernel_maps(machine);
			ret = -1;
			goto out_put;
		}

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
	}

	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);
out_put:
	dso__put(kernel);
	return ret;
}

static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

	list_for_each_entry(dso, &machine->dsos.head, node) {
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(machine->mmap_name));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
		struct dso *kernel = NULL;
		struct dso *dso;

		down_read(&machine->dsos.lock);

		list_for_each_entry(dso, &machine->dsos.head, node) {

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
				continue;


			kernel = dso;
			break;
		}

		up_read(&machine->dsos.lock);

		if (kernel == NULL)
			kernel = machine__findnew_dso(machine, machine->mmap_name);
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
			goto out_problem;
		}

		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);

		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
			dso__load(kernel, machine__kernel_map(machine));
		}
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
	}
	return 0;
out_problem:
	return -1;
}

int machine__process_mmap2_event(struct machine *machine,
				 union perf_event *event,
				 struct perf_sample *sample)
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
					event->mmap2.tid);
	if (thread == NULL)
		goto out_problem;

	map = map__new(machine, event->mmap2.start,
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
			event->mmap2.prot,
			event->mmap2.flags,
			event->mmap2.filename, thread);

	if (map == NULL)
		goto out_problem_map;

	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

	thread__put(thread);
	map__put(map);
	return 0;

out_problem_insert:
	map__put(map);
out_problem_map:
	thread__put(thread);
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
{
	struct thread *thread;
	struct map *map;
	u32 prot = 0;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap.pid,
					 event->mmap.tid);
	if (thread == NULL)
		goto out_problem;

	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
		prot = PROT_EXEC;

	map = map__new(machine, event->mmap.start,
			event->mmap.len, event->mmap.pgoff,
			0, 0, 0, 0, prot, 0,
			event->mmap.filename,
			thread);

	if (map == NULL)
		goto out_problem_map;

	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

	thread__put(thread);
	map__put(map);
	return 0;

out_problem_insert:
	map__put(map);
out_problem_map:
	thread__put(thread);
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
{
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads__set_last_match(threads, NULL);

	BUG_ON(refcount_read(&th->refcnt) == 0);
	if (lock)
		down_write(&threads->lock);
	rb_erase_init(&th->rb_node, &threads->entries);
	RB_CLEAR_NODE(&th->rb_node);
	--threads->nr;
	/*
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
	 */
	list_add_tail(&th->node, &threads->dead);
	if (lock)
		up_write(&threads->lock);
	thread__put(th);
}

void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
{
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
	int err = 0;

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

	/* if a thread currently exists for the thread id remove it */
	if (thread != NULL) {
		machine__remove_thread(machine, thread);
		thread__put(thread);
	}

	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);

	if (thread == NULL || parent == NULL ||
	    thread__fork(thread, parent, sample->time) < 0) {
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
		err = -1;
	}
	thread__put(thread);
	thread__put(parent);

	return err;
}

int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	if (thread != NULL) {
		thread__exited(thread);
		thread__put(thread);
	}

	return 0;
}

int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
		ret = machine__process_comm_event(machine, event, sample); break;
	case PERF_RECORD_MMAP:
		ret = machine__process_mmap_event(machine, event, sample); break;
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
	case PERF_RECORD_MMAP2:
		ret = machine__process_mmap2_event(machine, event, sample); break;
	case PERF_RECORD_FORK:
		ret = machine__process_fork_event(machine, event, sample); break;
	case PERF_RECORD_EXIT:
		ret = machine__process_exit_event(machine, event, sample); break;
	case PERF_RECORD_LOST:
		ret = machine__process_lost_event(machine, event, sample); break;
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
	case PERF_RECORD_ITRACE_START:
		ret = machine__process_itrace_start_event(machine, event); break;
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
	default:
		ret = -1;
		break;
	}

	return ret;
}

static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
{
	if (!regexec(regex, sym->name, 0, NULL, 0))
		return 1;
	return 0;
}

static void ip__resolve_ams(struct thread *thread,
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
	thread__find_cpumode_addr_location(thread, ip, &al);

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
	ams->phys_addr = 0;
}

static void ip__resolve_data(struct thread *thread,
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

	thread__find_symbol(thread, m, addr, &al);

	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
	ams->phys_addr = phys_addr;
}

struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
{
	struct mem_info *mi = mem_info__new();

	if (!mi)
		return NULL;

	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
	mi->data_src.val = sample->data_src;

	return mi;
}

static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
	char *srcline = NULL;

	if (!map || callchain_param.key == CCKEY_FUNCTION)
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
				      sym, show_sym, show_addr, ip);
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}

	return srcline;
}

struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

static int add_callchain_ip(struct thread *thread,
			    struct callchain_cursor *cursor,
			    struct symbol **parent,
			    struct addr_location *root_al,
			    u8 *cpumode,
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
			    struct iterations *iter,
			    u64 branch_from)
{
	struct addr_location al;
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
	const char *srcline = NULL;

	al.filtered = 0;
	al.sym = NULL;
	if (!cpumode) {
		thread__find_cpumode_addr_location(thread, ip, &al);
	} else {
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
				break;
			case PERF_CONTEXT_KERNEL:
				*cpumode = PERF_RECORD_MISC_KERNEL;
				break;
			case PERF_CONTEXT_USER:
				*cpumode = PERF_RECORD_MISC_USER;
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(cursor);
				return 1;
			}
			return 0;
		}
		thread__find_symbol(thread, *cpumode, ip, &al);
	}

	if (al.sym != NULL) {
		if (perf_hpp_list.parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(cursor);
		}
	}

	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

	srcline = callchain_srcline(al.map, al.sym, al.addr);
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
				       branch, flags, nr_loop_iter,
				       iter_cycles, branch_from, srcline);
}

struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
{
	unsigned int i;
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

				nr -= off;
			}
		}
	}
	return nr;
}

/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct callchain_cursor *cursor,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
{
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr), i;
	u8 cpumode = PERF_RECORD_MISC_USER;
	u64 ip, branch_from = 0;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
			int err;
			branch = false;
			flags = NULL;

			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
					ip = lbr_stack->entries[0].to;
					branch = true;
					flags = &lbr_stack->entries[0].flags;
					branch_from =
						lbr_stack->entries[0].from;
				}
			} else {
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else {
					ip = lbr_stack->entries[0].to;
					branch = true;
					flags = &lbr_stack->entries[0].flags;
					branch_from =
						lbr_stack->entries[0].from;
				}
			}

			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
					       branch, flags, NULL,
					       branch_from);
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = 0;
	u8 cpumode = PERF_RECORD_MISC_USER;
	int i, j, err, nr_entries;
	int skip_idx = -1;
	int first_call = 0;

	if (chain)
		chain_nr = chain->nr;

	if (perf_evsel__has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	skip_idx = arch_skip_callchain_idx(thread, chain);

	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
		struct iterations iter[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];

				if (chain == NULL)
					continue;

				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);

			if (!err)
				err = add_callchain_ip(thread, cursor, parent, root_al,
						       NULL, be[i].from,
						       true, &be[i].flags,
						       &iter[i], 0);
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}

		if (chain_nr == 0)
			return 0;

		chain_nr -= nr;
	}

check_calls:
	for (i = first_call, nr_entries = 0;
	     i < chain_nr && nr_entries < max_stack; i++) {
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
			j = i;
		else
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];

		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;

		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       false, NULL, NULL, 0);

		if (err)
			return (err < 0) ? err : 0;
	}

	return 0;
}

static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
	int ret = 1;

	if (!symbol_conf.inline_name || !map || !sym)
		return ret;

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
			return ret;
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);

		if (ret != 0)
			return ret;
	}

	return ret;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	const char *srcline = NULL;
	u64 addr;

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;

	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
	addr = map__map_ip(entry->map, entry->ip);

	srcline = callchain_srcline(entry->map, entry->sym, addr);
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym,
				       false, NULL, 0, 0, 0, srcline);
}

static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

	return unwind__get_entries(unwind_entry, cursor,
				   thread, sample, max_stack);
}

int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
}

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct threads *threads;
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}

		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
	}
	return rc;
}

int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
				  struct target *target, struct thread_map *threads,
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
{
	if (target__has_task(target))
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
	else if (target__has_cpu(target))
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
	/* command specified */
	return 0;
}

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
	thread__put(thread);

	return 0;
}

/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

int machine__get_kernel_start(struct machine *machine)
{
	struct map *map = machine__kernel_map(machine);
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map);
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
			machine->kernel_start = map->start;
	}
	return err;
}

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
	return dsos__findnew(&machine->dsos, filename);
}

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}
back to top