https://github.com/torvalds/linux
Revision 9d9a152ebaa86a9dede4624919566483c955d0a7 authored by Hans de Goede on 29 August 2018, 13:06:31 UTC, committed by Wolfram Sang on 30 August 2018, 21:02:13 UTC
On Bay Trail and Cherry Trail devices we set the pm_disabled flag for I2C
busses which the OS shares with the PUNIT as these need special handling.
Until now we called dev_pm_syscore_device(dev, true) for I2C controllers
with this flag set to keep these I2C controllers always on.

After commit 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and
resume from hibernation"), this no longer works. This commit modifies
lpss_iosf_exit_d3_state() to only run if lpss_iosf_enter_d3_state() has ran
before it, so that it does not run on a resume from hibernate (or from S3).

On these systems the conditions for lpss_iosf_enter_d3_state() to run
never become true, so lpss_iosf_exit_d3_state() never gets called and
the 2 LPSS DMA controllers never get forced into D0 mode, instead they
are left in their default automatic power-on when needed mode.

The not forcing of D0 mode for the DMA controllers enables these systems
to properly enter S0ix modes, which is a good thing.

But after entering S0ix modes the I2C controller connected to the PMIC
no longer works, leading to e.g. broken battery monitoring.

The _PS3 method for this I2C controller looks like this:

            Method (_PS3, 0, NotSerialized)  // _PS3: Power State 3
            {
                If ((((PMID == 0x04) || (PMID == 0x05)) || (PMID == 0x06)))
                {
                    Return (Zero)
                }

                PSAT |= 0x03
                Local0 = PSAT /* \_SB_.I2C5.PSAT */
            }

Where PMID = 0x05, so we enter the Return (Zero) path on these systems.

So even if we were to not call dev_pm_syscore_device(dev, true) the
I2C controller will be left in D0 rather then be switched to D3.

Yet on other Bay and Cherry Trail devices S0ix is not entered unless *all*
I2C controllers are in D3 mode. This combined with the I2C controller no
longer working now that we reach S0ix states on these systems leads to me
believing that the PUNIT itself puts the I2C controller in D3 when all
other conditions for entering S0ix states are true.

Since now the I2C controller is put in D3 over a suspend/resume we must
re-initialize it afterwards and that does indeed fix it no longer working.

This commit implements this fix by:

1) Making the suspend_late callback a no-op if pm_disabled is set and
making the resume_early callback skip the clock re-enable (since it now was
not disabled) while still doing the necessary I2C controller re-init.

2) Removing the dev_pm_syscore_device(dev, true) call, so that the suspend
and resume callbacks are actually called. Normally this would cause the
ACPI pm code to call _PS3 putting the I2C controller in D3, wreaking havoc
since it is shared with the PUNIT, but in this special case the _PS3 method
is a no-op so we can safely allow a "fake" suspend / resume.

Fixes: 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and resume ...")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200861
Cc: 4.15+ <stable@vger.kernel.org> # 4.15+
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1 parent 7fd6d98
Raw File
Tip revision: 9d9a152ebaa86a9dede4624919566483c955d0a7 authored by Hans de Goede on 29 August 2018, 13:06:31 UTC
i2c: designware: Re-init controllers with pm_disabled set on resume
Tip revision: 9d9a152
rsa-pkcs1pad.c
/*
 * RSA padding templates.
 *
 * Copyright (c) 2015  Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */

#include <crypto/algapi.h>
#include <crypto/akcipher.h>
#include <crypto/internal/akcipher.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/random.h>

/*
 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
 */
static const u8 rsa_digest_info_md5[] = {
	0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
	0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
	0x05, 0x00, 0x04, 0x10
};

static const u8 rsa_digest_info_sha1[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2b, 0x0e, 0x03, 0x02, 0x1a,
	0x05, 0x00, 0x04, 0x14
};

static const u8 rsa_digest_info_rmd160[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2b, 0x24, 0x03, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x14
};

static const u8 rsa_digest_info_sha224[] = {
	0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
	0x05, 0x00, 0x04, 0x1c
};

static const u8 rsa_digest_info_sha256[] = {
	0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x20
};

static const u8 rsa_digest_info_sha384[] = {
	0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
	0x05, 0x00, 0x04, 0x30
};

static const u8 rsa_digest_info_sha512[] = {
	0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
	0x05, 0x00, 0x04, 0x40
};

static const struct rsa_asn1_template {
	const char	*name;
	const u8	*data;
	size_t		size;
} rsa_asn1_templates[] = {
#define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
	_(md5),
	_(sha1),
	_(rmd160),
	_(sha256),
	_(sha384),
	_(sha512),
	_(sha224),
	{ NULL }
#undef _
};

static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
{
	const struct rsa_asn1_template *p;

	for (p = rsa_asn1_templates; p->name; p++)
		if (strcmp(name, p->name) == 0)
			return p;
	return NULL;
}

struct pkcs1pad_ctx {
	struct crypto_akcipher *child;
	unsigned int key_size;
};

struct pkcs1pad_inst_ctx {
	struct crypto_akcipher_spawn spawn;
	const struct rsa_asn1_template *digest_info;
};

struct pkcs1pad_request {
	struct scatterlist in_sg[2], out_sg[1];
	uint8_t *in_buf, *out_buf;
	struct akcipher_request child_req;
};

static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
		unsigned int keylen)
{
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	int err;

	ctx->key_size = 0;

	err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
	if (err)
		return err;

	/* Find out new modulus size from rsa implementation */
	err = crypto_akcipher_maxsize(ctx->child);
	if (err > PAGE_SIZE)
		return -ENOTSUPP;

	ctx->key_size = err;
	return 0;
}

static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
		unsigned int keylen)
{
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	int err;

	ctx->key_size = 0;

	err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
	if (err)
		return err;

	/* Find out new modulus size from rsa implementation */
	err = crypto_akcipher_maxsize(ctx->child);
	if (err > PAGE_SIZE)
		return -ENOTSUPP;

	ctx->key_size = err;
	return 0;
}

static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
{
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);

	/*
	 * The maximum destination buffer size for the encrypt/sign operations
	 * will be the same as for RSA, even though it's smaller for
	 * decrypt/verify.
	 */

	return ctx->key_size;
}

static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
		struct scatterlist *next)
{
	int nsegs = next ? 2 : 1;

	sg_init_table(sg, nsegs);
	sg_set_buf(sg, buf, len);

	if (next)
		sg_chain(sg, nsegs, next);
}

static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	unsigned int pad_len;
	unsigned int len;
	u8 *out_buf;

	if (err)
		goto out;

	len = req_ctx->child_req.dst_len;
	pad_len = ctx->key_size - len;

	/* Four billion to one */
	if (likely(!pad_len))
		goto out;

	out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
	err = -ENOMEM;
	if (!out_buf)
		goto out;

	sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
			  out_buf + pad_len, len);
	sg_copy_from_buffer(req->dst,
			    sg_nents_for_len(req->dst, ctx->key_size),
			    out_buf, ctx->key_size);
	kzfree(out_buf);

out:
	req->dst_len = ctx->key_size;

	kfree(req_ctx->in_buf);

	return err;
}

static void pkcs1pad_encrypt_sign_complete_cb(
		struct crypto_async_request *child_async_req, int err)
{
	struct akcipher_request *req = child_async_req->data;
	struct crypto_async_request async_req;

	if (err == -EINPROGRESS)
		return;

	async_req.data = req->base.data;
	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
	async_req.flags = child_async_req->flags;
	req->base.complete(&async_req,
			pkcs1pad_encrypt_sign_complete(req, err));
}

static int pkcs1pad_encrypt(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	int err;
	unsigned int i, ps_end;

	if (!ctx->key_size)
		return -EINVAL;

	if (req->src_len > ctx->key_size - 11)
		return -EOVERFLOW;

	if (req->dst_len < ctx->key_size) {
		req->dst_len = ctx->key_size;
		return -EOVERFLOW;
	}

	req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
				  GFP_KERNEL);
	if (!req_ctx->in_buf)
		return -ENOMEM;

	ps_end = ctx->key_size - req->src_len - 2;
	req_ctx->in_buf[0] = 0x02;
	for (i = 1; i < ps_end; i++)
		req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
	req_ctx->in_buf[ps_end] = 0x00;

	pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
			ctx->key_size - 1 - req->src_len, req->src);

	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
	if (!req_ctx->out_buf) {
		kfree(req_ctx->in_buf);
		return -ENOMEM;
	}

	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
			ctx->key_size, NULL);

	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
			pkcs1pad_encrypt_sign_complete_cb, req);

	/* Reuse output buffer */
	akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
				   req->dst, ctx->key_size - 1, req->dst_len);

	err = crypto_akcipher_encrypt(&req_ctx->child_req);
	if (err != -EINPROGRESS && err != -EBUSY)
		return pkcs1pad_encrypt_sign_complete(req, err);

	return err;
}

static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	unsigned int dst_len;
	unsigned int pos;
	u8 *out_buf;

	if (err)
		goto done;

	err = -EINVAL;
	dst_len = req_ctx->child_req.dst_len;
	if (dst_len < ctx->key_size - 1)
		goto done;

	out_buf = req_ctx->out_buf;
	if (dst_len == ctx->key_size) {
		if (out_buf[0] != 0x00)
			/* Decrypted value had no leading 0 byte */
			goto done;

		dst_len--;
		out_buf++;
	}

	if (out_buf[0] != 0x02)
		goto done;

	for (pos = 1; pos < dst_len; pos++)
		if (out_buf[pos] == 0x00)
			break;
	if (pos < 9 || pos == dst_len)
		goto done;
	pos++;

	err = 0;

	if (req->dst_len < dst_len - pos)
		err = -EOVERFLOW;
	req->dst_len = dst_len - pos;

	if (!err)
		sg_copy_from_buffer(req->dst,
				sg_nents_for_len(req->dst, req->dst_len),
				out_buf + pos, req->dst_len);

done:
	kzfree(req_ctx->out_buf);

	return err;
}

static void pkcs1pad_decrypt_complete_cb(
		struct crypto_async_request *child_async_req, int err)
{
	struct akcipher_request *req = child_async_req->data;
	struct crypto_async_request async_req;

	if (err == -EINPROGRESS)
		return;

	async_req.data = req->base.data;
	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
	async_req.flags = child_async_req->flags;
	req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
}

static int pkcs1pad_decrypt(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	int err;

	if (!ctx->key_size || req->src_len != ctx->key_size)
		return -EINVAL;

	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
	if (!req_ctx->out_buf)
		return -ENOMEM;

	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
			    ctx->key_size, NULL);

	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
			pkcs1pad_decrypt_complete_cb, req);

	/* Reuse input buffer, output to a new buffer */
	akcipher_request_set_crypt(&req_ctx->child_req, req->src,
				   req_ctx->out_sg, req->src_len,
				   ctx->key_size);

	err = crypto_akcipher_decrypt(&req_ctx->child_req);
	if (err != -EINPROGRESS && err != -EBUSY)
		return pkcs1pad_decrypt_complete(req, err);

	return err;
}

static int pkcs1pad_sign(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
	const struct rsa_asn1_template *digest_info = ictx->digest_info;
	int err;
	unsigned int ps_end, digest_size = 0;

	if (!ctx->key_size)
		return -EINVAL;

	digest_size = digest_info->size;

	if (req->src_len + digest_size > ctx->key_size - 11)
		return -EOVERFLOW;

	if (req->dst_len < ctx->key_size) {
		req->dst_len = ctx->key_size;
		return -EOVERFLOW;
	}

	req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
				  GFP_KERNEL);
	if (!req_ctx->in_buf)
		return -ENOMEM;

	ps_end = ctx->key_size - digest_size - req->src_len - 2;
	req_ctx->in_buf[0] = 0x01;
	memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
	req_ctx->in_buf[ps_end] = 0x00;

	memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
	       digest_info->size);

	pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
			ctx->key_size - 1 - req->src_len, req->src);

	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
			pkcs1pad_encrypt_sign_complete_cb, req);

	/* Reuse output buffer */
	akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
				   req->dst, ctx->key_size - 1, req->dst_len);

	err = crypto_akcipher_sign(&req_ctx->child_req);
	if (err != -EINPROGRESS && err != -EBUSY)
		return pkcs1pad_encrypt_sign_complete(req, err);

	return err;
}

static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
	const struct rsa_asn1_template *digest_info = ictx->digest_info;
	unsigned int dst_len;
	unsigned int pos;
	u8 *out_buf;

	if (err)
		goto done;

	err = -EINVAL;
	dst_len = req_ctx->child_req.dst_len;
	if (dst_len < ctx->key_size - 1)
		goto done;

	out_buf = req_ctx->out_buf;
	if (dst_len == ctx->key_size) {
		if (out_buf[0] != 0x00)
			/* Decrypted value had no leading 0 byte */
			goto done;

		dst_len--;
		out_buf++;
	}

	err = -EBADMSG;
	if (out_buf[0] != 0x01)
		goto done;

	for (pos = 1; pos < dst_len; pos++)
		if (out_buf[pos] != 0xff)
			break;

	if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
		goto done;
	pos++;

	if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size))
		goto done;

	pos += digest_info->size;

	err = 0;

	if (req->dst_len < dst_len - pos)
		err = -EOVERFLOW;
	req->dst_len = dst_len - pos;

	if (!err)
		sg_copy_from_buffer(req->dst,
				sg_nents_for_len(req->dst, req->dst_len),
				out_buf + pos, req->dst_len);
done:
	kzfree(req_ctx->out_buf);

	return err;
}

static void pkcs1pad_verify_complete_cb(
		struct crypto_async_request *child_async_req, int err)
{
	struct akcipher_request *req = child_async_req->data;
	struct crypto_async_request async_req;

	if (err == -EINPROGRESS)
		return;

	async_req.data = req->base.data;
	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
	async_req.flags = child_async_req->flags;
	req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
}

/*
 * The verify operation is here for completeness similar to the verification
 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
 * as in RFC2437.  RFC2437 section 9.2 doesn't define any operation to
 * retrieve the DigestInfo from a signature, instead the user is expected
 * to call the sign operation to generate the expected signature and compare
 * signatures instead of the message-digests.
 */
static int pkcs1pad_verify(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
	int err;

	if (!ctx->key_size || req->src_len < ctx->key_size)
		return -EINVAL;

	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
	if (!req_ctx->out_buf)
		return -ENOMEM;

	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
			    ctx->key_size, NULL);

	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
			pkcs1pad_verify_complete_cb, req);

	/* Reuse input buffer, output to a new buffer */
	akcipher_request_set_crypt(&req_ctx->child_req, req->src,
				   req_ctx->out_sg, req->src_len,
				   ctx->key_size);

	err = crypto_akcipher_verify(&req_ctx->child_req);
	if (err != -EINPROGRESS && err != -EBUSY)
		return pkcs1pad_verify_complete(req, err);

	return err;
}

static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
{
	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct crypto_akcipher *child_tfm;

	child_tfm = crypto_spawn_akcipher(&ictx->spawn);
	if (IS_ERR(child_tfm))
		return PTR_ERR(child_tfm);

	ctx->child = child_tfm;
	return 0;
}

static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
{
	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);

	crypto_free_akcipher(ctx->child);
}

static void pkcs1pad_free(struct akcipher_instance *inst)
{
	struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
	struct crypto_akcipher_spawn *spawn = &ctx->spawn;

	crypto_drop_akcipher(spawn);
	kfree(inst);
}

static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	const struct rsa_asn1_template *digest_info;
	struct crypto_attr_type *algt;
	struct akcipher_instance *inst;
	struct pkcs1pad_inst_ctx *ctx;
	struct crypto_akcipher_spawn *spawn;
	struct akcipher_alg *rsa_alg;
	const char *rsa_alg_name;
	const char *hash_name;
	int err;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask)
		return -EINVAL;

	rsa_alg_name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(rsa_alg_name))
		return PTR_ERR(rsa_alg_name);

	hash_name = crypto_attr_alg_name(tb[2]);
	if (IS_ERR(hash_name))
		return PTR_ERR(hash_name);

	digest_info = rsa_lookup_asn1(hash_name);
	if (!digest_info)
		return -EINVAL;

	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;

	ctx = akcipher_instance_ctx(inst);
	spawn = &ctx->spawn;
	ctx->digest_info = digest_info;

	crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst));
	err = crypto_grab_akcipher(spawn, rsa_alg_name, 0,
			crypto_requires_sync(algt->type, algt->mask));
	if (err)
		goto out_free_inst;

	rsa_alg = crypto_spawn_akcipher_alg(spawn);

	err = -ENAMETOOLONG;

	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
		     "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >=
	    CRYPTO_MAX_ALG_NAME ||
	    snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "pkcs1pad(%s,%s)",
		     rsa_alg->base.cra_driver_name, hash_name) >=
	    CRYPTO_MAX_ALG_NAME)
		goto out_drop_alg;

	inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC;
	inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
	inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);

	inst->alg.init = pkcs1pad_init_tfm;
	inst->alg.exit = pkcs1pad_exit_tfm;

	inst->alg.encrypt = pkcs1pad_encrypt;
	inst->alg.decrypt = pkcs1pad_decrypt;
	inst->alg.sign = pkcs1pad_sign;
	inst->alg.verify = pkcs1pad_verify;
	inst->alg.set_pub_key = pkcs1pad_set_pub_key;
	inst->alg.set_priv_key = pkcs1pad_set_priv_key;
	inst->alg.max_size = pkcs1pad_get_max_size;
	inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;

	inst->free = pkcs1pad_free;

	err = akcipher_register_instance(tmpl, inst);
	if (err)
		goto out_drop_alg;

	return 0;

out_drop_alg:
	crypto_drop_akcipher(spawn);
out_free_inst:
	kfree(inst);
	return err;
}

struct crypto_template rsa_pkcs1pad_tmpl = {
	.name = "pkcs1pad",
	.create = pkcs1pad_create,
	.module = THIS_MODULE,
};
back to top