Revision 9d9a152ebaa86a9dede4624919566483c955d0a7 authored by Hans de Goede on 29 August 2018, 13:06:31 UTC, committed by Wolfram Sang on 30 August 2018, 21:02:13 UTC
On Bay Trail and Cherry Trail devices we set the pm_disabled flag for I2C
busses which the OS shares with the PUNIT as these need special handling.
Until now we called dev_pm_syscore_device(dev, true) for I2C controllers
with this flag set to keep these I2C controllers always on.

After commit 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and
resume from hibernation"), this no longer works. This commit modifies
lpss_iosf_exit_d3_state() to only run if lpss_iosf_enter_d3_state() has ran
before it, so that it does not run on a resume from hibernate (or from S3).

On these systems the conditions for lpss_iosf_enter_d3_state() to run
never become true, so lpss_iosf_exit_d3_state() never gets called and
the 2 LPSS DMA controllers never get forced into D0 mode, instead they
are left in their default automatic power-on when needed mode.

The not forcing of D0 mode for the DMA controllers enables these systems
to properly enter S0ix modes, which is a good thing.

But after entering S0ix modes the I2C controller connected to the PMIC
no longer works, leading to e.g. broken battery monitoring.

The _PS3 method for this I2C controller looks like this:

            Method (_PS3, 0, NotSerialized)  // _PS3: Power State 3
            {
                If ((((PMID == 0x04) || (PMID == 0x05)) || (PMID == 0x06)))
                {
                    Return (Zero)
                }

                PSAT |= 0x03
                Local0 = PSAT /* \_SB_.I2C5.PSAT */
            }

Where PMID = 0x05, so we enter the Return (Zero) path on these systems.

So even if we were to not call dev_pm_syscore_device(dev, true) the
I2C controller will be left in D0 rather then be switched to D3.

Yet on other Bay and Cherry Trail devices S0ix is not entered unless *all*
I2C controllers are in D3 mode. This combined with the I2C controller no
longer working now that we reach S0ix states on these systems leads to me
believing that the PUNIT itself puts the I2C controller in D3 when all
other conditions for entering S0ix states are true.

Since now the I2C controller is put in D3 over a suspend/resume we must
re-initialize it afterwards and that does indeed fix it no longer working.

This commit implements this fix by:

1) Making the suspend_late callback a no-op if pm_disabled is set and
making the resume_early callback skip the clock re-enable (since it now was
not disabled) while still doing the necessary I2C controller re-init.

2) Removing the dev_pm_syscore_device(dev, true) call, so that the suspend
and resume callbacks are actually called. Normally this would cause the
ACPI pm code to call _PS3 putting the I2C controller in D3, wreaking havoc
since it is shared with the PUNIT, but in this special case the _PS3 method
is a no-op so we can safely allow a "fake" suspend / resume.

Fixes: 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and resume ...")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200861
Cc: 4.15+ <stable@vger.kernel.org> # 4.15+
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1 parent 7fd6d98
Raw File
fadvise.c
// SPDX-License-Identifier: GPL-2.0
/*
 * mm/fadvise.c
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 11Jan2003	Andrew Morton
 *		Initial version.
 */

#include <linux/kernel.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/fadvise.h>
#include <linux/writeback.h>
#include <linux/syscalls.h>
#include <linux/swap.h>

#include <asm/unistd.h>

/*
 * POSIX_FADV_WILLNEED could set PG_Referenced, and POSIX_FADV_NOREUSE could
 * deactivate the pages and clear PG_Referenced.
 */

int ksys_fadvise64_64(int fd, loff_t offset, loff_t len, int advice)
{
	struct fd f = fdget(fd);
	struct inode *inode;
	struct address_space *mapping;
	struct backing_dev_info *bdi;
	loff_t endbyte;			/* inclusive */
	pgoff_t start_index;
	pgoff_t end_index;
	unsigned long nrpages;
	int ret = 0;

	if (!f.file)
		return -EBADF;

	inode = file_inode(f.file);
	if (S_ISFIFO(inode->i_mode)) {
		ret = -ESPIPE;
		goto out;
	}

	mapping = f.file->f_mapping;
	if (!mapping || len < 0) {
		ret = -EINVAL;
		goto out;
	}

	bdi = inode_to_bdi(mapping->host);

	if (IS_DAX(inode) || (bdi == &noop_backing_dev_info)) {
		switch (advice) {
		case POSIX_FADV_NORMAL:
		case POSIX_FADV_RANDOM:
		case POSIX_FADV_SEQUENTIAL:
		case POSIX_FADV_WILLNEED:
		case POSIX_FADV_NOREUSE:
		case POSIX_FADV_DONTNEED:
			/* no bad return value, but ignore advice */
			break;
		default:
			ret = -EINVAL;
		}
		goto out;
	}

	/*
	 * Careful about overflows. Len == 0 means "as much as possible".  Use
	 * unsigned math because signed overflows are undefined and UBSan
	 * complains.
	 */
	endbyte = (u64)offset + (u64)len;
	if (!len || endbyte < len)
		endbyte = -1;
	else
		endbyte--;		/* inclusive */

	switch (advice) {
	case POSIX_FADV_NORMAL:
		f.file->f_ra.ra_pages = bdi->ra_pages;
		spin_lock(&f.file->f_lock);
		f.file->f_mode &= ~FMODE_RANDOM;
		spin_unlock(&f.file->f_lock);
		break;
	case POSIX_FADV_RANDOM:
		spin_lock(&f.file->f_lock);
		f.file->f_mode |= FMODE_RANDOM;
		spin_unlock(&f.file->f_lock);
		break;
	case POSIX_FADV_SEQUENTIAL:
		f.file->f_ra.ra_pages = bdi->ra_pages * 2;
		spin_lock(&f.file->f_lock);
		f.file->f_mode &= ~FMODE_RANDOM;
		spin_unlock(&f.file->f_lock);
		break;
	case POSIX_FADV_WILLNEED:
		/* First and last PARTIAL page! */
		start_index = offset >> PAGE_SHIFT;
		end_index = endbyte >> PAGE_SHIFT;

		/* Careful about overflow on the "+1" */
		nrpages = end_index - start_index + 1;
		if (!nrpages)
			nrpages = ~0UL;

		/*
		 * Ignore return value because fadvise() shall return
		 * success even if filesystem can't retrieve a hint,
		 */
		force_page_cache_readahead(mapping, f.file, start_index,
					   nrpages);
		break;
	case POSIX_FADV_NOREUSE:
		break;
	case POSIX_FADV_DONTNEED:
		if (!inode_write_congested(mapping->host))
			__filemap_fdatawrite_range(mapping, offset, endbyte,
						   WB_SYNC_NONE);

		/*
		 * First and last FULL page! Partial pages are deliberately
		 * preserved on the expectation that it is better to preserve
		 * needed memory than to discard unneeded memory.
		 */
		start_index = (offset+(PAGE_SIZE-1)) >> PAGE_SHIFT;
		end_index = (endbyte >> PAGE_SHIFT);
		/*
		 * The page at end_index will be inclusively discarded according
		 * by invalidate_mapping_pages(), so subtracting 1 from
		 * end_index means we will skip the last page.  But if endbyte
		 * is page aligned or is at the end of file, we should not skip
		 * that page - discarding the last page is safe enough.
		 */
		if ((endbyte & ~PAGE_MASK) != ~PAGE_MASK &&
				endbyte != inode->i_size - 1) {
			/* First page is tricky as 0 - 1 = -1, but pgoff_t
			 * is unsigned, so the end_index >= start_index
			 * check below would be true and we'll discard the whole
			 * file cache which is not what was asked.
			 */
			if (end_index == 0)
				break;

			end_index--;
		}

		if (end_index >= start_index) {
			unsigned long count;

			/*
			 * It's common to FADV_DONTNEED right after
			 * the read or write that instantiates the
			 * pages, in which case there will be some
			 * sitting on the local LRU cache. Try to
			 * avoid the expensive remote drain and the
			 * second cache tree walk below by flushing
			 * them out right away.
			 */
			lru_add_drain();

			count = invalidate_mapping_pages(mapping,
						start_index, end_index);

			/*
			 * If fewer pages were invalidated than expected then
			 * it is possible that some of the pages were on
			 * a per-cpu pagevec for a remote CPU. Drain all
			 * pagevecs and try again.
			 */
			if (count < (end_index - start_index + 1)) {
				lru_add_drain_all();
				invalidate_mapping_pages(mapping, start_index,
						end_index);
			}
		}
		break;
	default:
		ret = -EINVAL;
	}
out:
	fdput(f);
	return ret;
}

SYSCALL_DEFINE4(fadvise64_64, int, fd, loff_t, offset, loff_t, len, int, advice)
{
	return ksys_fadvise64_64(fd, offset, len, advice);
}

#ifdef __ARCH_WANT_SYS_FADVISE64

SYSCALL_DEFINE4(fadvise64, int, fd, loff_t, offset, size_t, len, int, advice)
{
	return ksys_fadvise64_64(fd, offset, len, advice);
}

#endif
back to top