Revision 9d9a152ebaa86a9dede4624919566483c955d0a7 authored by Hans de Goede on 29 August 2018, 13:06:31 UTC, committed by Wolfram Sang on 30 August 2018, 21:02:13 UTC
On Bay Trail and Cherry Trail devices we set the pm_disabled flag for I2C
busses which the OS shares with the PUNIT as these need special handling.
Until now we called dev_pm_syscore_device(dev, true) for I2C controllers
with this flag set to keep these I2C controllers always on.

After commit 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and
resume from hibernation"), this no longer works. This commit modifies
lpss_iosf_exit_d3_state() to only run if lpss_iosf_enter_d3_state() has ran
before it, so that it does not run on a resume from hibernate (or from S3).

On these systems the conditions for lpss_iosf_enter_d3_state() to run
never become true, so lpss_iosf_exit_d3_state() never gets called and
the 2 LPSS DMA controllers never get forced into D0 mode, instead they
are left in their default automatic power-on when needed mode.

The not forcing of D0 mode for the DMA controllers enables these systems
to properly enter S0ix modes, which is a good thing.

But after entering S0ix modes the I2C controller connected to the PMIC
no longer works, leading to e.g. broken battery monitoring.

The _PS3 method for this I2C controller looks like this:

            Method (_PS3, 0, NotSerialized)  // _PS3: Power State 3
            {
                If ((((PMID == 0x04) || (PMID == 0x05)) || (PMID == 0x06)))
                {
                    Return (Zero)
                }

                PSAT |= 0x03
                Local0 = PSAT /* \_SB_.I2C5.PSAT */
            }

Where PMID = 0x05, so we enter the Return (Zero) path on these systems.

So even if we were to not call dev_pm_syscore_device(dev, true) the
I2C controller will be left in D0 rather then be switched to D3.

Yet on other Bay and Cherry Trail devices S0ix is not entered unless *all*
I2C controllers are in D3 mode. This combined with the I2C controller no
longer working now that we reach S0ix states on these systems leads to me
believing that the PUNIT itself puts the I2C controller in D3 when all
other conditions for entering S0ix states are true.

Since now the I2C controller is put in D3 over a suspend/resume we must
re-initialize it afterwards and that does indeed fix it no longer working.

This commit implements this fix by:

1) Making the suspend_late callback a no-op if pm_disabled is set and
making the resume_early callback skip the clock re-enable (since it now was
not disabled) while still doing the necessary I2C controller re-init.

2) Removing the dev_pm_syscore_device(dev, true) call, so that the suspend
and resume callbacks are actually called. Normally this would cause the
ACPI pm code to call _PS3 putting the I2C controller in D3, wreaking havoc
since it is shared with the PUNIT, but in this special case the _PS3 method
is a no-op so we can safely allow a "fake" suspend / resume.

Fixes: 12864ff8545f ("ACPI / LPSS: Avoid PM quirks on suspend and resume ...")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200861
Cc: 4.15+ <stable@vger.kernel.org> # 4.15+
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1 parent 7fd6d98
Raw File
userfaultfd.c
/*
 *  mm/userfaultfd.c
 *
 *  Copyright (C) 2015  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/userfaultfd_k.h>
#include <linux/mmu_notifier.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <asm/tlbflush.h>
#include "internal.h"

static int mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pmd_t *dst_pmd,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
	struct mem_cgroup *memcg;
	pte_t _dst_pte, *dst_pte;
	spinlock_t *ptl;
	void *page_kaddr;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, dst_vma, dst_addr);
		if (!page)
			goto out;

		page_kaddr = kmap_atomic(page);
		ret = copy_from_user(page_kaddr,
				     (const void __user *) src_addr,
				     PAGE_SIZE);
		kunmap_atomic(page_kaddr);

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

	ret = -ENOMEM;
	if (mem_cgroup_try_charge(page, dst_mm, GFP_KERNEL, &memcg, false))
		goto out_release;

	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));

	ret = -EEXIST;
	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
	if (!pte_none(*dst_pte))
		goto out_release_uncharge_unlock;

	inc_mm_counter(dst_mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, dst_vma, dst_addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	lru_cache_add_active_or_unevictable(page, dst_vma);

	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	pte_unmap_unlock(dst_pte, ptl);
	ret = 0;
out:
	return ret;
out_release_uncharge_unlock:
	pte_unmap_unlock(dst_pte, ptl);
	mem_cgroup_cancel_charge(page, memcg, false);
out_release:
	put_page(page);
	goto out;
}

static int mfill_zeropage_pte(struct mm_struct *dst_mm,
			      pmd_t *dst_pmd,
			      struct vm_area_struct *dst_vma,
			      unsigned long dst_addr)
{
	pte_t _dst_pte, *dst_pte;
	spinlock_t *ptl;
	int ret;

	_dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
					 dst_vma->vm_page_prot));
	ret = -EEXIST;
	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
	if (!pte_none(*dst_pte))
		goto out_unlock;
	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);
	ret = 0;
out_unlock:
	pte_unmap_unlock(dst_pte, ptl);
	return ret;
}

static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
{
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;

	pgd = pgd_offset(mm, address);
	p4d = p4d_alloc(mm, pgd, address);
	if (!p4d)
		return NULL;
	pud = pud_alloc(mm, p4d, address);
	if (!pud)
		return NULL;
	/*
	 * Note that we didn't run this because the pmd was
	 * missing, the *pmd may be already established and in
	 * turn it may also be a trans_huge_pmd.
	 */
	return pmd_alloc(mm, pud, address);
}

#ifdef CONFIG_HUGETLB_PAGE
/*
 * __mcopy_atomic processing for HUGETLB vmas.  Note that this routine is
 * called with mmap_sem held, it will release mmap_sem before returning.
 */
static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
					      struct vm_area_struct *dst_vma,
					      unsigned long dst_start,
					      unsigned long src_start,
					      unsigned long len,
					      bool zeropage)
{
	int vm_alloc_shared = dst_vma->vm_flags & VM_SHARED;
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
	ssize_t err;
	pte_t *dst_pte;
	unsigned long src_addr, dst_addr;
	long copied;
	struct page *page;
	struct hstate *h;
	unsigned long vma_hpagesize;
	pgoff_t idx;
	u32 hash;
	struct address_space *mapping;

	/*
	 * There is no default zero huge page for all huge page sizes as
	 * supported by hugetlb.  A PMD_SIZE huge pages may exist as used
	 * by THP.  Since we can not reliably insert a zero page, this
	 * feature is not supported.
	 */
	if (zeropage) {
		up_read(&dst_mm->mmap_sem);
		return -EINVAL;
	}

	src_addr = src_start;
	dst_addr = dst_start;
	copied = 0;
	page = NULL;
	vma_hpagesize = vma_kernel_pagesize(dst_vma);

	/*
	 * Validate alignment based on huge page size
	 */
	err = -EINVAL;
	if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
		goto out_unlock;

retry:
	/*
	 * On routine entry dst_vma is set.  If we had to drop mmap_sem and
	 * retry, dst_vma will be set to NULL and we must lookup again.
	 */
	if (!dst_vma) {
		err = -ENOENT;
		dst_vma = find_vma(dst_mm, dst_start);
		if (!dst_vma || !is_vm_hugetlb_page(dst_vma))
			goto out_unlock;
		/*
		 * Only allow __mcopy_atomic_hugetlb on userfaultfd
		 * registered ranges.
		 */
		if (!dst_vma->vm_userfaultfd_ctx.ctx)
			goto out_unlock;

		if (dst_start < dst_vma->vm_start ||
		    dst_start + len > dst_vma->vm_end)
			goto out_unlock;

		err = -EINVAL;
		if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
			goto out_unlock;

		vm_shared = dst_vma->vm_flags & VM_SHARED;
	}

	if (WARN_ON(dst_addr & (vma_hpagesize - 1) ||
		    (len - copied) & (vma_hpagesize - 1)))
		goto out_unlock;

	/*
	 * If not shared, ensure the dst_vma has a anon_vma.
	 */
	err = -ENOMEM;
	if (!vm_shared) {
		if (unlikely(anon_vma_prepare(dst_vma)))
			goto out_unlock;
	}

	h = hstate_vma(dst_vma);

	while (src_addr < src_start + len) {
		pte_t dst_pteval;

		BUG_ON(dst_addr >= dst_start + len);
		VM_BUG_ON(dst_addr & ~huge_page_mask(h));

		/*
		 * Serialize via hugetlb_fault_mutex
		 */
		idx = linear_page_index(dst_vma, dst_addr);
		mapping = dst_vma->vm_file->f_mapping;
		hash = hugetlb_fault_mutex_hash(h, dst_mm, dst_vma, mapping,
								idx, dst_addr);
		mutex_lock(&hugetlb_fault_mutex_table[hash]);

		err = -ENOMEM;
		dst_pte = huge_pte_alloc(dst_mm, dst_addr, huge_page_size(h));
		if (!dst_pte) {
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			goto out_unlock;
		}

		err = -EEXIST;
		dst_pteval = huge_ptep_get(dst_pte);
		if (!huge_pte_none(dst_pteval)) {
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			goto out_unlock;
		}

		err = hugetlb_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma,
						dst_addr, src_addr, &page);

		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
		vm_alloc_shared = vm_shared;

		cond_resched();

		if (unlikely(err == -EFAULT)) {
			up_read(&dst_mm->mmap_sem);
			BUG_ON(!page);

			err = copy_huge_page_from_user(page,
						(const void __user *)src_addr,
						pages_per_huge_page(h), true);
			if (unlikely(err)) {
				err = -EFAULT;
				goto out;
			}
			down_read(&dst_mm->mmap_sem);

			dst_vma = NULL;
			goto retry;
		} else
			BUG_ON(page);

		if (!err) {
			dst_addr += vma_hpagesize;
			src_addr += vma_hpagesize;
			copied += vma_hpagesize;

			if (fatal_signal_pending(current))
				err = -EINTR;
		}
		if (err)
			break;
	}

out_unlock:
	up_read(&dst_mm->mmap_sem);
out:
	if (page) {
		/*
		 * We encountered an error and are about to free a newly
		 * allocated huge page.
		 *
		 * Reservation handling is very subtle, and is different for
		 * private and shared mappings.  See the routine
		 * restore_reserve_on_error for details.  Unfortunately, we
		 * can not call restore_reserve_on_error now as it would
		 * require holding mmap_sem.
		 *
		 * If a reservation for the page existed in the reservation
		 * map of a private mapping, the map was modified to indicate
		 * the reservation was consumed when the page was allocated.
		 * We clear the PagePrivate flag now so that the global
		 * reserve count will not be incremented in free_huge_page.
		 * The reservation map will still indicate the reservation
		 * was consumed and possibly prevent later page allocation.
		 * This is better than leaking a global reservation.  If no
		 * reservation existed, it is still safe to clear PagePrivate
		 * as no adjustments to reservation counts were made during
		 * allocation.
		 *
		 * The reservation map for shared mappings indicates which
		 * pages have reservations.  When a huge page is allocated
		 * for an address with a reservation, no change is made to
		 * the reserve map.  In this case PagePrivate will be set
		 * to indicate that the global reservation count should be
		 * incremented when the page is freed.  This is the desired
		 * behavior.  However, when a huge page is allocated for an
		 * address without a reservation a reservation entry is added
		 * to the reservation map, and PagePrivate will not be set.
		 * When the page is freed, the global reserve count will NOT
		 * be incremented and it will appear as though we have leaked
		 * reserved page.  In this case, set PagePrivate so that the
		 * global reserve count will be incremented to match the
		 * reservation map entry which was created.
		 *
		 * Note that vm_alloc_shared is based on the flags of the vma
		 * for which the page was originally allocated.  dst_vma could
		 * be different or NULL on error.
		 */
		if (vm_alloc_shared)
			SetPagePrivate(page);
		else
			ClearPagePrivate(page);
		put_page(page);
	}
	BUG_ON(copied < 0);
	BUG_ON(err > 0);
	BUG_ON(!copied && !err);
	return copied ? copied : err;
}
#else /* !CONFIG_HUGETLB_PAGE */
/* fail at build time if gcc attempts to use this */
extern ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
				      struct vm_area_struct *dst_vma,
				      unsigned long dst_start,
				      unsigned long src_start,
				      unsigned long len,
				      bool zeropage);
#endif /* CONFIG_HUGETLB_PAGE */

static __always_inline ssize_t mfill_atomic_pte(struct mm_struct *dst_mm,
						pmd_t *dst_pmd,
						struct vm_area_struct *dst_vma,
						unsigned long dst_addr,
						unsigned long src_addr,
						struct page **page,
						bool zeropage)
{
	ssize_t err;

	if (vma_is_anonymous(dst_vma)) {
		if (!zeropage)
			err = mcopy_atomic_pte(dst_mm, dst_pmd, dst_vma,
					       dst_addr, src_addr, page);
		else
			err = mfill_zeropage_pte(dst_mm, dst_pmd,
						 dst_vma, dst_addr);
	} else {
		if (!zeropage)
			err = shmem_mcopy_atomic_pte(dst_mm, dst_pmd,
						     dst_vma, dst_addr,
						     src_addr, page);
		else
			err = shmem_mfill_zeropage_pte(dst_mm, dst_pmd,
						       dst_vma, dst_addr);
	}

	return err;
}

static __always_inline ssize_t __mcopy_atomic(struct mm_struct *dst_mm,
					      unsigned long dst_start,
					      unsigned long src_start,
					      unsigned long len,
					      bool zeropage,
					      bool *mmap_changing)
{
	struct vm_area_struct *dst_vma;
	ssize_t err;
	pmd_t *dst_pmd;
	unsigned long src_addr, dst_addr;
	long copied;
	struct page *page;

	/*
	 * Sanitize the command parameters:
	 */
	BUG_ON(dst_start & ~PAGE_MASK);
	BUG_ON(len & ~PAGE_MASK);

	/* Does the address range wrap, or is the span zero-sized? */
	BUG_ON(src_start + len <= src_start);
	BUG_ON(dst_start + len <= dst_start);

	src_addr = src_start;
	dst_addr = dst_start;
	copied = 0;
	page = NULL;
retry:
	down_read(&dst_mm->mmap_sem);

	/*
	 * If memory mappings are changing because of non-cooperative
	 * operation (e.g. mremap) running in parallel, bail out and
	 * request the user to retry later
	 */
	err = -EAGAIN;
	if (mmap_changing && READ_ONCE(*mmap_changing))
		goto out_unlock;

	/*
	 * Make sure the vma is not shared, that the dst range is
	 * both valid and fully within a single existing vma.
	 */
	err = -ENOENT;
	dst_vma = find_vma(dst_mm, dst_start);
	if (!dst_vma)
		goto out_unlock;
	/*
	 * Be strict and only allow __mcopy_atomic on userfaultfd
	 * registered ranges to prevent userland errors going
	 * unnoticed. As far as the VM consistency is concerned, it
	 * would be perfectly safe to remove this check, but there's
	 * no useful usage for __mcopy_atomic ouside of userfaultfd
	 * registered ranges. This is after all why these are ioctls
	 * belonging to the userfaultfd and not syscalls.
	 */
	if (!dst_vma->vm_userfaultfd_ctx.ctx)
		goto out_unlock;

	if (dst_start < dst_vma->vm_start ||
	    dst_start + len > dst_vma->vm_end)
		goto out_unlock;

	err = -EINVAL;
	/*
	 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
	 * it will overwrite vm_ops, so vma_is_anonymous must return false.
	 */
	if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
	    dst_vma->vm_flags & VM_SHARED))
		goto out_unlock;

	/*
	 * If this is a HUGETLB vma, pass off to appropriate routine
	 */
	if (is_vm_hugetlb_page(dst_vma))
		return  __mcopy_atomic_hugetlb(dst_mm, dst_vma, dst_start,
						src_start, len, zeropage);

	if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
		goto out_unlock;

	/*
	 * Ensure the dst_vma has a anon_vma or this page
	 * would get a NULL anon_vma when moved in the
	 * dst_vma.
	 */
	err = -ENOMEM;
	if (vma_is_anonymous(dst_vma) && unlikely(anon_vma_prepare(dst_vma)))
		goto out_unlock;

	while (src_addr < src_start + len) {
		pmd_t dst_pmdval;

		BUG_ON(dst_addr >= dst_start + len);

		dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
		if (unlikely(!dst_pmd)) {
			err = -ENOMEM;
			break;
		}

		dst_pmdval = pmd_read_atomic(dst_pmd);
		/*
		 * If the dst_pmd is mapped as THP don't
		 * override it and just be strict.
		 */
		if (unlikely(pmd_trans_huge(dst_pmdval))) {
			err = -EEXIST;
			break;
		}
		if (unlikely(pmd_none(dst_pmdval)) &&
		    unlikely(__pte_alloc(dst_mm, dst_pmd, dst_addr))) {
			err = -ENOMEM;
			break;
		}
		/* If an huge pmd materialized from under us fail */
		if (unlikely(pmd_trans_huge(*dst_pmd))) {
			err = -EFAULT;
			break;
		}

		BUG_ON(pmd_none(*dst_pmd));
		BUG_ON(pmd_trans_huge(*dst_pmd));

		err = mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
				       src_addr, &page, zeropage);
		cond_resched();

		if (unlikely(err == -EFAULT)) {
			void *page_kaddr;

			up_read(&dst_mm->mmap_sem);
			BUG_ON(!page);

			page_kaddr = kmap(page);
			err = copy_from_user(page_kaddr,
					     (const void __user *) src_addr,
					     PAGE_SIZE);
			kunmap(page);
			if (unlikely(err)) {
				err = -EFAULT;
				goto out;
			}
			goto retry;
		} else
			BUG_ON(page);

		if (!err) {
			dst_addr += PAGE_SIZE;
			src_addr += PAGE_SIZE;
			copied += PAGE_SIZE;

			if (fatal_signal_pending(current))
				err = -EINTR;
		}
		if (err)
			break;
	}

out_unlock:
	up_read(&dst_mm->mmap_sem);
out:
	if (page)
		put_page(page);
	BUG_ON(copied < 0);
	BUG_ON(err > 0);
	BUG_ON(!copied && !err);
	return copied ? copied : err;
}

ssize_t mcopy_atomic(struct mm_struct *dst_mm, unsigned long dst_start,
		     unsigned long src_start, unsigned long len,
		     bool *mmap_changing)
{
	return __mcopy_atomic(dst_mm, dst_start, src_start, len, false,
			      mmap_changing);
}

ssize_t mfill_zeropage(struct mm_struct *dst_mm, unsigned long start,
		       unsigned long len, bool *mmap_changing)
{
	return __mcopy_atomic(dst_mm, start, 0, len, true, mmap_changing);
}
back to top