https://github.com/torvalds/linux
Revision 9ea359f7314132cbcb5a502d2d8ef095be1f45e4 authored by Grygorii Strashko on 01 December 2014, 15:34:04 UTC, committed by Wolfram Sang on 04 December 2014, 18:25:31 UTC
According to I2C specification the NACK should be handled as follows:
"When SDA remains HIGH during this ninth clock pulse, this is defined as the Not
Acknowledge signal. The master can then generate either a STOP condition to
abort the transfer, or a repeated START condition to start a new transfer."
[I2C spec Rev. 6, 3.1.6: http://www.nxp.com/documents/user_manual/UM10204.pdf]

Currently the Davinci i2c driver interrupts the transfer on receipt of a
NACK but fails to send a STOP in some situations and so makes the bus
stuck until next I2C IP reset (idle/enable).

For example, the issue will happen during SMBus read transfer which
consists from two i2c messages write command/address and read data:

S Slave Address Wr A Command Code A Sr Slave Address Rd A D1..Dn A P
<--- write -----------------------> <--- read --------------------->

The I2C client device will send NACK if it can't recognize "Command Code"
and it's expected from I2C master to generate STP in this case.
But now, Davinci i2C driver will just exit with -EREMOTEIO and STP will
not be generated.

Hence, fix it by generating Stop condition (STP) always when NACK is received.

This patch fixes Davinci I2C in the same way it was done for OMAP I2C
commit cda2109a26eb ("i2c: omap: query STP always when NACK is received").

Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reported-by: Hein Tibosch <hein_tibosch@yahoo.es>
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Cc: stable@kernel.org
1 parent 7cc78f8
Raw File
Tip revision: 9ea359f7314132cbcb5a502d2d8ef095be1f45e4 authored by Grygorii Strashko on 01 December 2014, 15:34:04 UTC
i2c: davinci: generate STP always when NACK is received
Tip revision: 9ea359f
slab.h
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	unsigned long flags;	/* Active flags on the slab */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;

/* The list of all slab caches on the system */
extern struct list_head slab_caches;

/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size);

#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void create_kmalloc_caches(unsigned long);

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif


/* Functions provided by the slab allocators */
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);

extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
			unsigned long flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			size_t size, unsigned long flags);

struct mem_cgroup;

int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *));

unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{ return NULL; }

static inline unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
#endif


/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_DEBUG_FREE)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_NOTRACK)
#else
#define SLAB_CACHE_FLAGS (0)
#endif

#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

int __kmem_cache_shutdown(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void slab_kmem_cache_release(struct kmem_cache *);

struct seq_file;
struct file;

struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);

#ifdef CONFIG_MEMCG_KMEM
static inline bool is_root_cache(struct kmem_cache *s)
{
	return !s->memcg_params || s->memcg_params->is_root_cache;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
					struct kmem_cache *p)
{
	return (p == s) ||
		(s->memcg_params && (p == s->memcg_params->root_cache));
}

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->name;
	return s->name;
}

/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 * That said the caller must assure the memcg's cache won't go away. Since once
 * created a memcg's cache is destroyed only along with the root cache, it is
 * true if we are going to allocate from the cache or hold a reference to the
 * root cache by other means. Otherwise, we should hold either the slab_mutex
 * or the memcg's slab_caches_mutex while calling this function and accessing
 * the returned value.
 */
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!s->memcg_params)
		return NULL;

	rcu_read_lock();
	params = rcu_dereference(s->memcg_params);
	cachep = params->memcg_caches[idx];
	rcu_read_unlock();

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
	 * memcg_register_cache()).
	 */
	smp_read_barrier_depends();
	return cachep;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
	return s->memcg_params->root_cache;
}

static __always_inline int memcg_charge_slab(struct kmem_cache *s,
					     gfp_t gfp, int order)
{
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
	return __memcg_charge_slab(s, gfp, order);
}

static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
{
	if (!memcg_kmem_enabled())
		return;
	if (is_root_cache(s))
		return;
	__memcg_uncharge_slab(s, order);
}
#else
static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	return NULL;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}

static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
{
	return 0;
}

static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
{
}
#endif

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
	       __func__, cachep->name, s->name);
	WARN_ON_ONCE(1);
	return s;
}

#ifndef CONFIG_SLOB
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
	struct alien_cache **alien;	/* on other nodes */
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))

#endif

void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);

#endif /* MM_SLAB_H */
back to top